China Naval Modernization: Implications for U.S. Navy Capabilities—Background and Issues for Congress

Updated August 24, 2020
Summary

In an era of renewed great power competition, China’s military modernization effort, including its naval modernization effort, has become the top focus of U.S. defense planning and budgeting. China’s navy, which China has been steadily modernizing for more than 25 years, since the early to mid-1990s, has become a formidable military force within China’s near-seas region, and it is conducting a growing number of operations in more-distant waters, including the broader waters of the Western Pacific, the Indian Ocean, and waters around Europe.

China’s navy is viewed as posing a major challenge to the U.S. Navy’s ability to achieve and maintain wartime control of blue-water ocean areas in the Western Pacific—the first such challenge the U.S. Navy has faced since the end of the Cold War—and forms a key element of a Chinese challenge to the long-standing status of the United States as the leading military power in the Western Pacific. Some U.S. observers are expressing concern or alarm regarding the pace of China’s naval shipbuilding effort, particularly for building larger surface ships, and resulting trend lines regarding the relative sizes China’s navy and the U.S. Navy.

China’s naval modernization effort encompasses a wide array of ship, aircraft, and weapon acquisition programs, as well as improvements in maintenance and logistics, doctrine, personnel quality, education and training, and exercises. China’s navy has currently has certain limitations and weaknesses, and is working to overcome them.

China’s military modernization effort, including its naval modernization effort, is assessed as being aimed at developing capabilities for addressing the situation with Taiwan militarily, if need be; for achieving a greater degree of control or domination over China’s near-seas region, particularly the South China Sea; for enforcing China’s view that it has the right to regulate foreign military activities in its 200-mile maritime exclusive economic zone (EEZ); for defending China’s commercial sea lines of communication (SLOCs), particularly those linking China to the Persian Gulf; for displacing U.S. influence in the Western Pacific; and for asserting China’s status as the leading regional power and a major world power.

Consistent with these goals, observers believe China wants its navy to be capable of acting as part of a Chinese anti-access/area-denial (A2/AD) force—a force that can deter U.S. intervention in a conflict in China’s near-seas region over Taiwan or some other issue, or failing that, delay the arrival or reduce the effectiveness of intervening U.S. forces. Additional missions for China’s navy include conducting maritime security (including antipiracy) operations, evacuating Chinese nationals from foreign countries when necessary, and conducting humanitarian assistance/disaster response (HA/DR) operations.

The U.S. Navy in recent years has taken a number of actions to counter China’s naval modernization effort. Among other things, the U.S. Navy has shifted a greater percentage of its fleet to the Pacific; assigned its most-capable new ships and aircraft and its best personnel to the Pacific; maintained or increased general presence operations, training and developmental exercises, and engagement and cooperation with allied and other navies in the Indo-Pacific; increased the planned future size of the Navy; initiated, increased, or accelerated numerous programs for developing new military technologies and acquiring new ships, aircraft, unmanned vehicles, and weapons; begun development of new operational concepts (i.e., new ways to employ Navy and Marine Corps forces) for countering Chinese maritime A2/AD forces; and signaled that the Navy in coming years will shift to a more-distributed fleet architecture that will feature a smaller portion of larger ships, a larger portion of smaller ships, and a substantially greater use of unmanned vehicles. The issue for Congress is whether the U.S. Navy is responding appropriately to China’s naval modernization effort.
Contents

Introduction ... 1
 Issue for Congress .. 1
 Sources and Terminology .. 1
Background ... 2
 Brief Overview of China’s Naval Modernization Effort .. 2
 Selected Elements of China’s Naval Modernization Effort .. 4
 Anti-Ship Missiles .. 4
 Submarines .. 8
 Aircraft Carriers ... 11
 Surface Combatants ... 16
 Amphibious Ships ... 21
 Operations Away from Home Waters .. 27
Numbers of Ships; Comparisons to U.S. Navy .. 27
U.S. Navy Response .. 30
Issues for Congress .. 32
 Overview .. 32
 Discussion ... 32
Legislative Activity for FY2021 ... 34
 Coverage in Related CRS Reports ... 34
 House .. 35
 Senate .. 35

Figures

Figure 1. DF-21D Anti-Ship Ballistic Missile (ASBM) ... 5
Figure 2. DF-26 Multi-Role Intermediate-Range Ballistic Missile (IRBM) 6
Figure 3. Reported Image of Anti-Ship Cruise Missile (ASCM) .. 7
Figure 4. Reported Image of Anti-Ship Cruise Missile (ASCM) .. 7
Figure 5. Reported Image of Anti-Ship Cruise Missile (ASCM) .. 8
Figure 6. Yuan (Type 039) Attack Submarine (SS) ... 9
Figure 7. Shang (Type 093) Attack Submarine (SSN) ... 10
Figure 8. Jin (Type 094) Ballistic Missile Submarine (SSBN) .. 11
Figure 9. Liaoning (Type 001) Aircraft Carrier ... 12
Figure 10. Shandong (Type 001A) Aircraft Carrier ... 13
Figure 11. Type 002 Aircraft Carrier Under Construction .. 14
Figure 12. J-15 Flying Shark Carrier-Capable Fighter .. 16
Figure 13. Renhai (Type 055) Cruiser (or Large Destroyer) .. 17
Figure 14. Renhai (Type 055) Cruiser (or Large Destroyer) .. 18
Figure 15. Luyang III (Type 052D) Destroyer ... 19
Figure 16. Jiangkai II (Type 054A) Frigate ... 20
Figure 17. Jingdao (Type 056) Corvette .. 21
Figure 18. Yuzhao (Type 071) Amphibious Ship ... 22
Figure 19. Type 075 Amphibious Assault Ship ... 23
Figure 20. Type 075 Amphibious Assault Ship ... 24
Figure 21. Type 075 Amphibious Assault Ship ... 24
Figure 22. Type 075 Amphibious Assault Ship ... 25
Figure 23. Type 075 Amphibious Assault Ship During and After Reported Fire 25
Figure 24. Notional Rendering of Possible Type 076 Amphibious Assault Ship 26
Figure 25. Notional Rendering of Possible Type 076 Amphibious Assault Ship 26

Tables
Table 1. Numbers of Certain Types of Ships Since 2005 ... 29
Table 2. Numbers of Battle Force Ships, 2000-2030 ... 30

Appendixes
Appendix A. Comparing U.S. and Chinese Naval Capabilities 41
Appendix B. U.S. Navy’s Ability to Counter Chinese ASBMIs 44

Contacts
Author Information ... 47
Introduction

Issue for Congress

This report provides background information and issues for Congress on China’s naval modernization effort and its implications for U.S. Navy capabilities. In an era of renewed great power competition,1 China’s military modernization effort, including its naval modernization effort, has become the top focus of U.S. defense planning and budgeting.2 The issue for Congress for this CRS report is whether the U.S. Navy is responding appropriately to China’s naval modernization effort. Decisions that Congress reaches on this issue could affect U.S. and allied security, Navy capabilities and funding requirements, and the defense industrial base.

Sources and Terminology

This report is based on unclassified open-source information, such as the annual Department of Defense (DOD) report to Congress on military and security developments involving China,3 a 2019 Defense Intelligence Agency (DIA) report on China’s military power,4 a 2015 Office of Naval Intelligence (ONI) report on China’s navy,5 published reference sources such as IHS Jane’s Fighting Ships,6 and press reports.

For convenience, this report uses the term China’s naval modernization effort to refer to the modernization not only of China’s navy, but also of Chinese military forces outside China’s navy that can be used to counter U.S. naval forces operating in the Western Pacific, such as land-based anti-ship ballistic missiles (ASBMs), land-based surface-to-air missiles (SAMs), land-based Air Force aircraft armed with anti-ship cruise missiles (ASCMs), and land-based long-range radars for detecting and tracking ships at sea.

China’s military is formally called the People’s Liberation Army (PLA). Its navy is called the PLA Navy, or PLAN (also abbreviated as PLA[N]), and its air force is called the PLA Air Force.

1 For further discussion of the shift to an era of renewed great power competition, see CRS Report R43838, Renewed Great Power Competition: Implications for Defense—Issues for Congress, by Ronald O'Rourke.

5 Office of Naval Intelligence, The PLA Navy, New Capabilities and Missions for the 21st Century, undated but released in April 2015, 47 pp.

6 Unless otherwise indicated, shipbuilding program information in this report is taken from IHS Jane’s Fighting Ships 2018-2019, and previous editions. Other sources of information on these shipbuilding programs may disagree regarding projected ship commissioning dates or other details, but sources present similar overall pictures regarding PLA Navy shipbuilding.
or PLAAF. The PLA Navy includes an air component that is called the PLA Naval Air Force, or PLANAF. China refers to its ballistic missile force as the PLA Rocket Force (PLARF).

This report uses the term China’s near-seas region to refer to the Yellow Sea, East China Sea, and South China Sea—the waters enclosed by the so-called first island chain. The so-called second island chain encloses both these waters and the Philippine Sea that is situated between the Philippines and Guam.7

Background

Brief Overview of China’s Naval Modernization Effort

Key overview points concerning China’s naval modernization effort include the following:

- China’s naval modernization effort, which forms part of a broader Chinese military modernization effort that includes several additional areas of emphasis,8 has been underway for more than 25 years, since the early to mid-1990s, and has transformed China’s navy into a much more modern and capable force. China’s navy is a formidable military force within China’s near-seas region, and it is conducting a growing number of operations in more-distant waters, including the broader waters of the Western Pacific, the Indian Ocean, and waters around Europe.

- China’s navy is, by far, the largest of any country in East Asia, and within the past few years it has surpassed the U.S. Navy in numbers of battle force ships, meaning the types of ships that count toward the quoted size of the U.S. Navy. Some U.S. observers are expressing concern or alarm regarding the pace of China’s naval shipbuilding effort, particularly for building larger surface ships, and resulting trend lines regarding the relative sizes China’s navy and the U.S. Navy. ONI states that at the end of 2020, China’s will have 360 battle force ships, compared with a projected total of 297 for the U.S. Navy at the end of FY2020. ONI projects that China will have 400 battle force ships by 2025, and 425 by 2030.9

- China’s naval ships, aircraft, and weapons are now much more modern and capable than they were at the start of the 1990s, and are now comparable in many respects to those of Western navies. ONI states that “Chinese naval ship design

7 For a map showing the first and second island chains, see 2019 DIA CMP, p. 32.
8 Other areas of emphasis in China’s military modernization effort include space capabilities, cyber and electronic warfare capabilities, ballistic missile forces, and aviation forces, as well as the development of emerging military-applicable technologies such as hypersonics, artificial intelligence, robotics and unmanned vehicles, directed-energy technologies, and quantum technologies. For a discussion of advanced military technologies, see CRS In Focus IF11105, Defense Primer: Emerging Technologies, by Kelley M. Sayler.
9 U.S.-China competition in military capabilities in turn forms one dimension of a broader U.S.-China strategic competition that also includes political, diplomatic, economic, technological, and ideological dimensions.
9 Source for China’s number of battle force ships: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, p. 3. PROVIDED BY Senate Armed Services Committee TO CRS AND CBO ON MARCH 4, 2020, AND USED IN THIS CRS REPORT WITH THE COMMITTEE’S PERMISSION.
China’s navy is viewed as posing a major challenge to the U.S. Navy’s ability to achieve and maintain wartime control of blue-water ocean areas in the Western Pacific—the first such challenge the U.S. Navy has faced since the end of the Cold War. China’s navy forms a key element of a Chinese challenge to the long-standing status of the United States as the leading military power in the Western Pacific.

China’s naval modernization effort encompasses a wide array of platform and weapon acquisition programs, including anti-ship ballistic missiles (ASBMs), anti-ship cruise missiles (ASCMs), submarines, surface ships, aircraft, unmanned vehicles (UVs), and supporting C4ISR (command and control, communications, computers, intelligence, surveillance, and reconnaissance) systems. China’s naval modernization effort also includes improvements in maintenance and logistics, doctrine, personnel quality, education and training, and exercises.

China’s military modernization effort, including its naval modernization effort, is assessed as being aimed at developing capabilities for addressing the situation with Taiwan militarily, if need be; for achieving a greater degree of control or domination over China’s near-seas region, particularly the South China Sea; for enforcing China’s view that it has the right to regulate foreign military activities in its 200-mile maritime exclusive economic zone (EEZ); for defending China’s commercial sea lines of communication (SLOCs), particularly those linking China to the Persian Gulf; for displacing U.S. influence in the Western Pacific; and for asserting China’s status as the leading regional power and a major world power.

Consistent with these goals, observers believe China wants its navy to be capable of acting as part of a Chinese anti-access/area-denial (A2/AD) force—a force that can deter U.S. intervention in a conflict in China’s near-seas region over Taiwan or some other issue, or failing that, delay the arrival or reduce the effectiveness of intervening U.S. forces. Additional missions for China’s navy include conducting maritime security (including antipiracy) operations, evacuating Chinese nationals from foreign countries when necessary, and conducting humanitarian assistance/disaster response (HA/DR) operations.

Until recently, China’s naval modernization effort appeared to be focused less on increasing total platform (i.e., ship and aircraft) numbers than on increasing the modernity and capability of Chinese platforms. Some categories of ships, however, are now increasing in number. The planned ultimate size and composition of China’s navy is not publicly known. In contrast to the U.S. Navy, China does not release a navy force-level goal or detailed information about

10 Source: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, p. 3. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission.

12 For additional discussion, see CRS Report R42784, U.S.-China Strategic Competition in South and East China Seas: Background and Issues for Congress, by Ronald O'Rourke.
planned ship procurement rates, planned total ship procurement quantities, planned ship retirements, and resulting projected force levels.

- Although China’s naval modernization effort has substantially improved China’s naval capabilities in recent years, China’s navy currently is assessed as having limitations or weaknesses in certain areas, including joint operations with other parts of China’s military, antisubmarine warfare (ASW), long-range targeting, a limited capacity for carrying out at-sea resupply of combatant ships operating far from home waters, a need to train large numbers of personnel to crew its new ships, and a lack of recent combat experience. China is working to reduce or overcome such limitations and weaknesses. Although China’s navy has limitations and weaknesses, it may nevertheless be sufficient for performing missions of interest to Chinese leaders. As China’s navy reduces its weaknesses and limitations, it may become sufficient to perform a wider array of potential missions.

- In addition to modernizing its navy, China in recent years has substantially increased the size of its coast guard. China’s coast guard is, by far, the largest of any country in East Asia. China also operates a sizeable maritime militia that includes a large number of fishing vessels. China relies primarily on its maritime militia and coast guard to assert and defend its maritime claims in its near-seas region, with the navy operating over the horizon as a potential backup force.

Selected Elements of China’s Naval Modernization Effort

This section provides a brief overview of elements of China’s naval modernization effort that have attracted frequent attention from observers.

Anti-Ship Missiles

Anti-Ship Ballistic Missiles (ASBMs)

China reportedly is fielding two types of land-based ballistic missiles with a capability of hitting ships at sea—the DF-21D (Figure 1), a road-mobile anti-ship ballistic missile (ASBM) with a

14 See, for example, Minnie Chan, “China’s Navy Goes Back to Work on Big Ambitions but Long-Term Gaps Remain,” South China Morning Post, August 22, 2020.
16 For example, China’s naval shipbuilding programs were previously dependent on foreign suppliers for some ship components. ONI, however, states that “almost all weapons and sensors on Chinese naval ships are produced in-country, and China no longer relies on Russia or other countries for any significant naval ship systems.” (Source: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, pp. 2-3. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission.)
17 For additional details, see 2019 DOD CMSD, p. 53, and 2019 DIA CMP, p. 78.
18 For additional discussion, see CRS Report R42784, U.S.-China Strategic Competition in South and East China Seas: Background and Issues for Congress, by Ronald O'Rourke.
China Naval Modernization: Implications for U.S. Navy Capabilities

range of more than 1,500 kilometers (i.e., more than 910 nautical miles), and the DF-26 (Figure 2), a road-mobile, multi-role intermediate range ballistic missile (IRBM) with a maximum range of about 4,000 kilometers (i.e., about 2,160 nautical miles) that DOD says “is capable of conducting conventional and nuclear precision strikes against ground targets as well as conventional strikes against naval targets....” China reportedly is also developing hypersonic glide vehicles that, if incorporated into Chinese ASBMs, could make Chinese ASBMs more difficult to intercept.

Figure 1. DF-21D Anti-Ship Ballistic Missile (ASBM)

Observers have expressed strong concern about China’s ASBMs, because such missiles, in combination with broad-area maritime surveillance and targeting systems, would permit China to attack aircraft carriers, other U.S. Navy ships, or ships of allied or partner navies operating in the Western Pacific. The U.S. Navy has not previously faced a threat from highly accurate ballistic missiles capable of hitting moving ships at sea. For this reason, some observers have referred to ASBMs as a “game-changing” weapon.

19 2019 DOD CMSD, p. 44.
Anti-Ship Cruise Missiles (ASCMs)

China’s extensive inventory of anti-ship cruise missiles (ASCMs) (see Figure 3, Figure 4, and Figure 5 for examples of reported images) includes both Russian- and Chinese-made designs, including some advanced and highly capable ones, such as the Chinese-made YJ-18. Although China’s ASCMs do not always receive as much press attention as China’s ASBMs (perhaps because ASBMs are a more-recent development), observers are nevertheless concerned about them. As discussed later in this report, the relatively long ranges of certain Chinese ASCMs have led to concerns among some observers that the U.S. Navy is not moving quickly enough to arm U.S. Navy surface ships with similarly ranged ASCMs.
Figure 3. Reported Image of Anti-Ship Cruise Missile (ASCM)

Source: Detail of photograph accompanying Pierre Delrieu, “China Promotes Export of CM-302 Supersonic ASCM,” Asian Military Review, July 3, 2017. (The article states “This is an article published in our December 2016 issue.”) The article states “According to Chinese news media reports, the China Aerospace Science and Industry Corporation (CASIC) CM-302 missile is being marketed for export as “the world’s best anti-ship missile.” The missile was showcased at the Zhuhai air show in the southern People’s Republic of China (PRC) in early November [2016], and is advertised as [a] supersonic Anti-Ship Missile (AShM) [ASCM] which can also be used in the land attack role. The report, published by the national newspaper China Daily, suggest[s] that the CM-302 is the export version of CASIC’s YJ-12 supersonic AShM, which is in service with the PRC’s armed forces.”

Figure 4. Reported Image of Anti-Ship Cruise Missile (ASCM)

Source: Photograph accompanying “YJ-18 Eagle Strike CH-SS-NX-13,” GlobalSecurity.org, updated October 1, 2019. The article states “A grand military parade was held in Beijing on 01 October 2019 to mark the People's Republic of China’s 70th founding anniversary…. One weapon featured was a new generation of anti-ship missiles called YJ-18. China unveiled YJ-18/18A anti-ship cruise missiles in the National Day military parade in central Beijing.”

China Naval Modernization: Implications for U.S. Navy Capabilities

Congressional Research Service
Submarines

Overview

China has been steadily modernizing its submarine force, and most of its submarines are now built to relatively modern Chinese and Russian designs. Qualitatively, China’s newest submarines might not be as capable as Russia’s newest submarines, but compared to China’s earlier submarines, which were built to antiquated designs, its newer submarines are much more capable.

Types and Numbers

Most of China’s submarines are non-nuclear-powered attack submarines (SSs). China also operates a small number of nuclear-powered attack submarines (SSNs) and a small number of nuclear-powered ballistic missile submarines (SSBNs). The number of SSNs and SSBNs may grow in coming years, but the force will likely continue to consist mostly of SSs. DOD states that “The speed of growth of the submarine force has slowed and [the force] will likely grow to between 65 and 70 submarines by 2020.”

22 2019 DOD CMSD, pp. 35-36.
probably will increase to about 70 submarines.”

ONI states that “China’s submarine force continues to grow at a low rate, though with substantially more-capable submarines replacing older units. Current expansion at submarine production yards could allow higher future production numbers.” ONI projects that China’s submarine force will grow from a total of 66 boats (4 SSBNs, 7 SSNs, and 55 SSs) in 2020 to 76 boats (8 SSBNs, 13 SSNs, and 55 SSs) in 2030.

China’s newest series-built SS design is the Yuan-class (Type 039) SS (Figure 6), its newest SS class is the Shang-class (Type 093) SSN (Figure 7), and its newest SSBN class is the Jin (Type 094) class SSBN (Figure 8). In May 2020, it was reported that two additional Type 094 SSBNs had entered service, increasing the total number in service to six.

Figure 6.Yuan (Type 039) Attack Submarine (SS)

ONI states that “nuclear submarines are solely produced at Huludao Shipyard and typically undergo two to four years of outfitting and sea-trials before becoming operational. Since 2006, eight nuclear submarines have reached IOC initial operational capability], for an average of one

every 15 months…. Diesel-Electric submarines are produced at two shipyards and typically undergo approximately one year of outfitting and sea-trials before becoming operational.”

Figure 7. Shang (Type 093) Attack Submarine (SSN)

Submarine Weapons

China’s submarines are armed with one or more of the following: ASCMs, wire-guided and wake-homing torpedoes, and mines. Wake-homing torpedoes can be very difficult for surface ships to decoy. Each Jin-class SSBN is expected to be armed with 12 JL-2 nuclear-armed submarine-launched ballistic missiles (SLBMs). China reportedly is developing a new SLBM, called the JL-3, as a successor to the JL-2.

27 DOD estimates the range of the JL-2 at 7,400 km. Such a range could permit Jin-class SSBNs to attack targets in Alaska (except the Alaskan panhandle) from protected bastions close to China, targets in Hawaii (as well as targets in Alaska, except the Alaskan panhandle) from locations south of Japan, targets in the western half of the 48 contiguous states (as well as Hawaii and Alaska) from mid-ocean locations west of Hawaii, or targets in all 50 states from mid-ocean locations east of Hawaii.

28 2019 DOD CMSD, p. 36.
Figure 8. *Jin* (Type 094) Ballistic Missile Submarine (SSBN)

Source: Photograph accompanying Minnie Chan, “China Puts a Damper on Navy’s 70th Anniversary Celebrations As It Tries to Allay Fears Over Rising Strength,” *South China Morning Post*, April 23, 2019. The article credits the photograph to Xinhua.

Aircraft Carriers

Overview

China’s first aircraft carrier, *Liaoning* (Type 001) (*Figure 9*), entered service in 2012. China’s second aircraft carrier (and its first fully indigenously built carrier), *Shandong* (Type 001A) (*Figure 10*), entered service on December 17, 2019. China’s third carrier, the Type 002 (*Figure 11*), is under construction; ONI expects it to enter service by 2024.29 China’s fourth carrier, reportedly also to be built to the Type 002 design, reportedly may begin construction as early as 2021.30 The Type 002 carriers, like *Liaoning* and *Shandong*, are to be conventionally powered. ONI states that “China has two shipyards expected to be used for aircraft carrier production, though several other large commercial yards could, in theory, also build carriers.”31 Observers have speculated that China may eventually field a force of four to six (or possibly more than six)

aircraft carriers. In late November 2019, it was reported that the Chinese government, while deciding to proceed with the construction of the fourth carrier, had put on hold plans to build a fifth carrier, known as the Type 003, which was to be nuclear-powered, due to budgetary and technical considerations. Observers expect that it will be some time before China masters carrier-based aircraft operations on a substantial scale.

Liaoning (Type 001)

Liaoning is a refurbished ex-Ukrainian aircraft carrier that China purchased from Ukraine in 1998 as an unfinished ship. It is conventionally powered, has an estimated full load displacement of 60,000 to 66,000 tons, and reportedly can accommodate an air wing of 30 or more fixed-wing airplanes and helicopters, including 24 fighters. The *Liaoning* lacks aircraft catapults and instead launches fixed-wing airplanes off the ship’s bow using an inclined “ski ramp.”

![Liaoning (Type 001) Aircraft Carrier](source)

By comparison, U.S. Navy aircraft carriers are nuclear powered (giving them greater cruising endurance than a conventionally powered ship), have a full load displacement of about 100,000

33 Prior to the dissolution of the Soviet Union in December 1991, Ukraine was a part of the Soviet Union and the place where the Soviet Union built its aircraft carriers.
tons, can accommodate air wings of 60 or more aircraft, including fixed-wing aircraft and some helicopters, and launch their fixed-wing aircraft over both their bows and their angled decks using catapults, which can give those aircraft a range/payload capability greater than that of aircraft launched with a ski ramp. The Liaoning, like U.S. Navy aircraft carriers, lands fixed-wing aircraft using arresting wires on its angled deck.

Some observers have referred to the Liaoning as China’s “starter” carrier. China has been using Liaoning in part for pilot training. In May 2018, China reportedly announced that the aircraft carrier group formed around Liaoning had reached initial operational capability (IOC), although that term might not mean the same as it does when used by DOD in connection with U.S. weapon systems.

Shandong (Type 001A)

Shandong is a modified version of the Liaoning design that incorporates some design improvements, including features that reportedly will permit it to embark and operate a larger air wing of 40 aircraft that includes 36 fighters.35 Its displacement is estimated at 66,000 to 70,000 tons.

![Shandong (Type 001A) Aircraft Carrier](image)

Figure 10. Shandong (Type 001A) Aircraft Carrier

Type 002 Carriers

Press reports state that China’s Type 002 carriers may have a displacement of 80,000 tons to 85,000 tons and will be equipped with electromagnetic catapults rather than a ski ramp, which will improve the range/payload capability of the fixed-wing aircraft that they operate.

Figure 11. Type 002 Aircraft Carrier Under Construction

The start of construction of the first Type 002 carrier was announced in the Chinese press in November 2018.36 A July 18, 2020, press report states

China is expected to launch37 its next-generation aircraft carrier within a year and construction on a sister ship for the new giant vessel has been hastened, two sources close to the projects said.

The Type 002 aircraft carrier—the country’s third carrier and the second to be domestically developed—has started the final assembly process, two independent sources told the South China Morning Post.

“Assembly of the new aircraft carrier has begun and is expected to be completed in the first half of next year, because the Covid-19 pandemic slowed down progress,” said the first source, who requested anonymity because of the sensitivity of the issue.

37 The term launch means that the ship is put into the water for the final stages of its construction.
“Workers are also starting the keel-laying for the new carrier’s sister ship. Both ships have been built by the Jiangnan Shipyard outside Shanghai.”

Type 003 Carrier

A March 15, 2018, press report stated that following the Type 002 carrier design, China was to begin building a Type 003 carrier design that would displace 90,000 to 100,000 tons and, in addition to being equipped with electromagnetic catapults, be nuclear powered. As mentioned above, in late November 2019, it was reported that the Chinese government had put on hold plans to build this Type 003 design.

Possible Type 076 Catapult-Equipped Amphibious Assault Ship

See also the discussion of the possible catapult-equipped Type 076 amphibious assault ship (Figure 24 and Figure 25) in the section on China’s amphibious ships.

Commercial Heavy-Lift Ship Reportedly Used in Exercise as Helicopter Carrier

In August 2020, it was reported that China had used a commercial heavy-lift ship in a military exercise as a platform for operating at least two PLA Army helicopters.

Carrier-Based Aircraft

China’s primary carrier-based fighter aircraft is the J-15 or Flying Shark (Figure 12), an aircraft derived from the Russian Su-33 Flanker aircraft design that can operate from carriers equipped with a ski ramp rather than catapults. China reportedly plans to develop a carrier-capable variant of its J-20 fifth-generation stealth fighter and/or a carrier-capable variant of its FC-31 fifth-generation stealth fighter to complement or succeed the J-15 on catapult-equipped Chinese carriers.

China reportedly is also developing a carrier-based stealth drone aircraft.

Roles and Missions

Although aircraft carriers might have some value for China in Taiwan-related conflict scenarios, they are not considered critical for Chinese operations in such scenarios, because Taiwan is within range of land-based Chinese aircraft. Consequently, most observers believe that China is acquiring carriers primarily for their value in other kinds of operations, and to demonstrate China’s status as a leading regional power and major world power. Chinese aircraft carriers could

be used for power-projection operations, particularly in scenarios that do not involve opposing U.S. forces, and to impress or intimidate foreign observers.43

Chinese aircraft carriers could also be used for humanitarian assistance and disaster relief (HA/DR) operations, maritime security operations (such as antipiracy operations), and noncombatant evacuation operations (NEOs). Politically, aircraft carriers could be particularly valuable to China for projecting an image of China as a major world power, because aircraft carriers are viewed by many as symbols of major world power status. In a combat situation involving opposing U.S. naval and air forces, Chinese aircraft carriers would be highly vulnerable to attack by U.S. ships and aircraft, but conducting such attacks could divert U.S. ships and aircraft from performing other missions in a conflict situation with China.

\textbf{Figure 12. J-15 Flying Shark Carrier-Capable Fighter}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{j-15_flying_shark_carrier-capable_fighter.jpg}
\end{figure}

\textbf{Surface Combatants}

\textit{Overview}

China since the early 1990s has put into service numerous new classes of indigenously built surface combatants, including a new cruiser (or large destroyer), several classes of destroyers and frigates, a new class of corvettes (i.e., light frigates), and a new class of missile-armed patrol craft.

These new classes of surface combatants demonstrate a significant modernization of PLA Navy surface combatant technology. DOD states that China’s navy “remains engaged in a robust surface combatant construction program, producing new guided-missile cruisers (CG), guided-missile destroyers (DDG), and guided-missile frigates (FFG) which will significantly upgrade the PLAN’s air defense, anti-ship, and anti-submarine capabilities.” DIA states that “the era of past designs has given way to production of modern multimission destroyer, frigate, and corvette classes as China’s technological advancement in naval design has begun to approach a level commensurate with, and in some cases exceeding, that of other modern navies.” China is also upgrading its older surface combatants with new weapons and other equipment.

Type 055 Cruiser/Large Destroyer

China is building a new class of cruiser (or large destroyer), called the Renhai-class or Type 055 ([Figure 13](#) and [Figure 14](#)), that reportedly displaces between 10,000 and 13,000 tons. By way of comparison, the U.S. Navy’s Ticonderoga (CG-47) class cruisers and Arleigh Burke (DDG-51) class destroyers (aka the U.S. Navy’s Aegis cruisers and destroyers) displace about 10,100 tons and 9,300 tons, respectively, while the U.S. Navy’s three Zumwalt (DDG-1000) class destroyers displace about 15,600 tons.

![Figure 13. Renhai (Type 055) Cruiser (or Large Destroyer)](#)

Source: Photograph accompanying Kyle Mizokami, “Can the U.S. Navy Beat China’s New Type 055 Destroyer In a Fight?” *National Interest*, September 29, 2019.

44 *2019 DOD CMSD*, p. 36.
45 *2019 DIA CMP*, p. 70.
China Naval Modernization: Implications for U.S. Navy Capabilities

Figure 14. Renhai (Type 055) Cruiser (or Large Destroyer)

![Renhai (Type 055) Cruiser](image)

ONI states that Type 055 ships are being built by two shipyards, and that multiple ships in the class are currently under construction. The first Type 055 ship was reportedly commissioned into service on January 12, 2020, about two and a half years after it was launched (i.e., put into the water for the final stages of its construction). As of August 2020, the second ship in the class reportedly was still in sea trials, about two years after it was launched. The sixth ship in the class was reportedly launched in December 2019. In August 2020, it was reported that the seventh ship in the class was delivered to the navy in May 2020, that the eighth ship in the class may be launched later in 2020, and that the eighth ship “will complete the first group of Type 055 destroyers.”

Type 052 Destroyer

China since the early 1990s has put into service multiple new classes of indigenously built destroyers, the most recent of which is the Luyang III (Type 052D) class (Figure 15), which displaces about 7,500 tons and is equipped with phased-array radars and vertical launch missile

48 Kristin Huang, “China Steps Up Warship Building Programme as Navy Looks to Extend Its Global Reach,” South China Morning Post, December 31, 2019. See also Liu Xuanzun, “Chinese Navy Commissions First Type 055 Destroyer,” Global Times, January 12, 2020. Another press report states that eight Type 055 ships are expected to enter service over the next four years, and that more than two dozen such ships might be in service by the late 2020s. (Franz-Stefan Gady, “China’s Navy Commissions First-of-Class Type 055 Guided Missile Destroyer,” Diplomat, January 13, 2020.)

systems that outwardly are broadly similar to those on U.S. Navy cruisers and destroyers. Type 052D ships have been in serial production for some time, and the 23rd such ship was reportedly launched in December 2019.\(^{50}\) One observer states that “at present the PLAN fields 20 aegis-type [i.e., Type 052] destroyers in service; however in four to five years it is likely that the PLAN will field 39 aegis-type destroyers in service (or 40, depending on whether a 26th 052D is built or not).”\(^{51}\)

Figure 15. Luyang III (Type 052D) Destroyer

Type 054 Frigate

China since the early 1990s has also put into service multiple new classes of indigenously built frigates, the most recent of which is the Jiangkai II (Type 054A) class (Figure 16), which displaces about 4,000 tons. ONI states that 30 Type 054As entered service between 2008 and 2019, and that no additional Type 054As are currently under construction.\(^{52}\)

\(^{50}\) Kristin Huang, “China Steps Up Warship Building Programme as Navy Looks to Extend Its Global Reach,” *South China Morning Post*, December 31, 2019.

China Naval Modernization: Implications for U.S. Navy Capabilities

Figure 16. Jiangkai II (Type 054A) Frigate

Source: Chinese Military Review, “Type 054A (Jiangkai II class) FFG-546 Yancheng Guided Missile Frigate in Mediterranean,” undated (but with a URL suggesting that it was posted in February of 2014), accessed August 29, 2018.

Type 056 Corvette

China is also building a new type of corvette (i.e., a light frigate, or FFL) called the Jiangdao class or Type 056 (Figure 17), which displaces about 1,500 tons. Type 056 ships are being built at a high annual rate in four shipyards. The first was commissioned in 2013. DOD states that “more than 40 of these corvettes entered service by the end of 2018, and more than a dozen more are currently under construction or outfitting.”53 The 42nd and 43rd were reportedly commissioned into service in December 2019.54 ONI states that as of February 2020, more than 50 had entered service and another 15 were under construction.55 In June 2020, it was reported that China that month had commissioned its ninth Type 056 of 2020.56

53 2019 DOD CMSD, p. 36.
Figure 17. Jingdao (Type 056) Corvette

Source: Chinese Military Review, "Random Images of Chinese Type 056 Jiangdao Class Light Corvette," undated (but with a URL suggesting that it was posted in October 2013), accessed August 29, 2018.

Amphibious Ships

Type 071 Amphibious Ship

China’s new Yuzhao or Type 071 amphibious ships (Figure 18) have an estimated displacement of more than 19,855 tons, compared to about 25,900 tons for the U.S. Navy’s new San Antonio (LPD-17) class amphibious ships. The fifth Type 071 ship was reportedly commissioned into service in September 2018, and at least two more reportedly are under construction.

57 Unless otherwise indicated, displacement figures cited in this report are full load displacements. IHS Jane’s Fighting Ships 2017-2018, p. 156, does not provide a full load displacement for the Type 071 class design. Instead, it provides a standard displacement of 19,855 tons. Full load displacement is larger than standard displacement, so the full load displacement of the Type 071 design is more than 19,855 tons.
Figure 18. Yuzhao (Type 071) Amphibious Ship

Source: Chinese Military Review, “Jinggang Shan (999) Type 071 YUZHAO Class Amphibious Transport Dock,” undated (but with a URL suggesting that it was posted in February 2012), accessed August 29, 2018.

Type 075 Amphibious Assault Ship

On September 25, 2019, China launched (i.e., put into the water for the final stages of its construction) the first of a new type of amphibious assault ship58 called the Type 075 (Figure 19, Figure 20, Figure 21, and Figure 22) that has an estimated displacement of 30,000 to 40,000 tons, compared to 41,000 to 45,000 tons for U.S. Navy LHA/LHD-type amphibious assault ships.59 On April 11, 2020, it was reported that a fire had occurred on the ship;60 published photographs showed smoke rising from the ship and subsequent smoke stains at the ship’s stern (Figure 23). On August 5, it was reported that the ship had begun its first sea trial,61 suggesting that damage caused by the fire had been repaired.

58 Amphibious assault ships, also referred to as helicopter carriers or (in British parlance) commando carriers, look like medium-sized aircraft carriers. U.S. Navy amphibious assault ships are designated LHA or LHD.

On April 22, 2020, China launched the second Type 075 ship.62 ONI states that as of February 2020, three Type 075s, including the first one, were under construction.63 An August 7, 2020, press report stated that commercial satellite photographs show the third ship under construction.64

\textbf{Figure 19. Type 075 Amphibious Assault Ship}

\begin{center}
\includegraphics[width=\textwidth]{type075_amphibious_assault_ship.png}
\end{center}

63 Source: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, p. 4. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission.

Figure 20. Type 075 Amphibious Assault Ship

Figure 21. Type 075 Amphibious Assault Ship

Source: Photograph accompanying Liu Zhen, “Chinese Military’s First Type 075 Amphibious Assault Ship Begins Sea Trial,” South China Morning Post, August 7, 2020. The article credits the photograph to Weibo.
Figure 22. Type 075 Amphibious Assault Ship

Source: Photograph accompanying Joseph Trevithick and Tyler Rogoway, “China Just Launched Its Huge And Incredibly Quickly Built Amphibious Assault Ship,” The Drive, September 25, 2019. The caption to the photograph credits the photograph to “Chinese internet.”

Figure 23. Type 075 Amphibious Assault Ship During and After Reported Fire

Possible Type 076 Catapult-Equipped Amphibious Assault Ship

In July 2020, it was reported that China might be planning to build the first of a new class of amphibious assault ships, called the Type 076 by observers (Figure 24 and Figure 25), that would be equipped with electromagnetic catapults, which would enhance its ability to support operations by fixed-wing aircraft and make it somewhat more like an aircraft carrier.65

Figure 24. Notional Rendering of Possible Type 076 Amphibious Assault Ship

Figure 25. Notional Rendering of Possible Type 076 Amphibious Assault Ship

Amphibious Ship Roles and Missions

Although larger amphibious ships such as the Type 071 and Type 075 would be of value for conducting amphibious landings in Taiwan-related conflict scenarios, some observers believe that China is building such ships as much for their value in conducting other operations, such as operations for asserting and defending China’s claims in the South and East China Seas, humanitarian assistance/disaster relief (HA/DR) operations, maritime security operations (such as antipiracy operations), and noncombatant evacuation operations (NEOs). Politically, amphibious ships can also be used for naval diplomacy (i.e., port calls and engagement activities) and for impressing or intimidating foreign observers.66

Operations Away from Home Waters

Although China’s navy operates primarily in China’s home waters, Chinese navy ships are conducting increasing numbers of operations away from China’s home waters, including the broader waters of the Western Pacific, the Indian Ocean, and the waters surrounding Europe, including the Mediterranean Sea and the Baltic Sea. A November 23, 2019, DOD news report quoted Admiral Philip Davidson, the commander of the U.S. Indo-Pacific Command, as stating that China’s navy had conducted more global naval deployments in the past 30 months than it had in the previous 30 years.67

While many of China’s long-distance naval deployments have been for making diplomatic port calls, some of them have been for other purposes, including conducting training exercises and carrying out antipiracy operations in waters off Somalia. China has been conducting antipiracy operations in waters off Somalia since December 2008 via a succession of more than 30 rotationally deployed naval escort task forces. China’s distant naval operations are supported in part by China’s military base in Djibouti, which China officially opened in August 2017 as its first overseas military base.68

Numbers of Ships; Comparisons to U.S. Navy

The planned ultimate size and composition of China’s navy is not publicly known. The U.S. Navy makes public its force-level goal and regularly releases a 30-year shipbuilding plan that shows planned procurements of new ships, planned retirements of existing ships, and resulting projected force levels, as well as a five-year shipbuilding plan that shows, in greater detail, the first five years of the 30-year shipbuilding plan.69 In contrast, China does not release a navy force-level goal or detailed information about planned ship procurement rates, planned total ship

66 See, for example, Grant Newsham, “China’s Amphibious Force Emerges,” Asia Times, November 5, 2019.
69 For more information on the U.S. Navy’s force-level goal, 30-year shipbuilding plan, and five-year shipbuilding plan, see CRS Report RL32665, Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress, by Ronald O'Rourke.
procurement quantities, planned ship retirements, and resulting projected force levels. It is possible that the ultimate size and composition of China’s navy is an unsettled and evolving issue even among Chinese military and political leaders.

Table 1 shows numbers of certain types of Chinese navy ships from 2005 to the present (and the number of China coast guard ships from 2017 to the present) as presented in DOD’s annual reports on military and security developments involving China. DOD states that China’s navy “is the region’s largest navy, with more than 300 surface combatants, submarines, amphibious ships, patrol craft, and specialized types.”70 DIA states that “although the overall inventory has remained relatively constant, the PLAN is rapidly retiring older, single-mission warships in favor of larger, multimission ships equipped with advanced antiship, antiair, and antisubmarine weapons and sensors and C2 [command and control] facilities.”71

As can be seen in Table 1, about 65% of the increase since 2005 in the number of Chinese navy ships shown in the table (a net increase of 77 ships out of a total net increase of 119 ships) resulted from increases in missile-armed fast patrol craft starting in 2009 (a net increase of 35 ships) and corvettes starting in 2014 (42 ships). These are the smallest surface combatants shown in the table. The net 35-ship increase in missile-armed fast patrol craft was due to the construction between 2004 and 2009 of 60 new Houbei (Type 022) fast attack craft72 and the retirement of 25 older fast attack craft that were replaced by Type 022 craft. The 42-ship increase in corvettes is due to the Jingdao (Type 056) corvette program discussed earlier. ONI states that “a significant portion of China’s Battle Force consists of the large number of new corvettes and guided-missile frigates recently built for the PLAN.”73

As can also be seen in the table, most of the remaining increase since 2005 in the number of Chinese navy ships shown in the table is accounted for by increases in destroyers (12 ships), frigates (11 ships), and amphibious ships (17 ships). Most of the increase in frigates occurred in the earlier years of the table; the number of frigates has changed little in the later years of the table.

Table 1 lumps together less-capable older Chinese ships with more-capable modern Chinese ships. Thus, in examining the numbers in the table, it can be helpful to keep in mind that for many of the types of Chinese ships shown in the table, the percentage of the ships accounted for by more-capable modern designs was growing over time, even if the total number of ships for those types was changing little.

For reference, Table 1 also shows the total number of ships in the U.S. Navy (known technically as the total number of battle force ships), and compares it to the total number of Chinese ships shown in the table. The result is an apples-vs.-oranges comparison, because the Chinese figure excludes certain ship types, such as auxiliary and support ships, while the U.S. Navy figure includes auxiliary and support ships but excludes patrol craft.

70 2019 DOD CMSD, p. 35. A similar statement is in 2019 DIA CMP, p. 63.

71 2019 DIA CMP, p. 69.

72 The Type 022 program was discussed in the August 1, 2018, version of this CRS report, and earlier versions.

Table 1. Numbers of Certain Types of Ships Since 2005

(Figures include both less-capable older units and more-capable newer units)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic missile submarines</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>+3</td>
</tr>
<tr>
<td>Nuclear-powered attack submarines</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Diesel attack submarines</td>
<td>51</td>
<td>50</td>
<td>53</td>
<td>54</td>
<td>54</td>
<td>49</td>
<td>48</td>
<td>49</td>
<td>51</td>
<td>53</td>
<td>57</td>
<td>54</td>
<td>47</td>
<td>50</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Aircraft carriers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td>Destroyers</td>
<td>21</td>
<td>25</td>
<td>25</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>26</td>
<td>23</td>
<td>24</td>
<td>21</td>
<td>23</td>
<td>31</td>
<td>28</td>
<td>33</td>
<td>+12</td>
<td></td>
</tr>
<tr>
<td>Frigates</td>
<td>43</td>
<td>45</td>
<td>47</td>
<td>45</td>
<td>48</td>
<td>49</td>
<td>53</td>
<td>53</td>
<td>52</td>
<td>49</td>
<td>52</td>
<td>56</td>
<td>51</td>
<td>54</td>
<td>+11</td>
<td></td>
</tr>
<tr>
<td>Corvettes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>15</td>
<td>23</td>
<td>23</td>
<td>28</td>
<td>42</td>
<td>+42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missile-armed coastal patrol craft</td>
<td>51</td>
<td>45</td>
<td>41</td>
<td>45</td>
<td>70</td>
<td>85</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>88</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>+35</td>
<td></td>
</tr>
<tr>
<td>Amphibious ships: LSTs and LPDs</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>34</td>
<td>33</td>
<td>37</td>
<td>+17</td>
<td></td>
</tr>
<tr>
<td>Total of types above (does not include other types, such as auxiliary and support ships)</td>
<td>216</td>
<td>221</td>
<td>222</td>
<td>233</td>
<td>262</td>
<td>276</td>
<td>276</td>
<td>271</td>
<td>273</td>
<td>283</td>
<td>294</td>
<td>303</td>
<td>317</td>
<td>306</td>
<td>335</td>
<td>+119</td>
</tr>
<tr>
<td>China Coast Guard ships</td>
<td>n/a</td>
<td>185</td>
<td>240</td>
<td>248</td>
</tr>
<tr>
<td>Total U.S. Navy battle force ships (which includes auxiliary and support ships but excludes patrol craft)</td>
<td>291</td>
<td>282</td>
<td>281</td>
<td>279</td>
<td>282</td>
<td>282</td>
<td>285</td>
<td>288</td>
<td>284</td>
<td>287</td>
<td>285</td>
<td>289</td>
<td>271</td>
<td>275</td>
<td>279</td>
<td>286</td>
</tr>
<tr>
<td>U.S. Navy figure compared to above total for certain Chinese ship types</td>
<td>+75</td>
<td>+61</td>
<td>+59</td>
<td>+46</td>
<td>+20</td>
<td>+9</td>
<td>+12</td>
<td>+13</td>
<td>+14</td>
<td>+2</td>
<td>-5</td>
<td>-32</td>
<td>-42</td>
<td>-27</td>
<td>-49</td>
<td>-124</td>
</tr>
</tbody>
</table>

Source: Table prepared by CRS based on 2005-2019 editions of annual DOD report to Congress on military and security developments involving China (known for 2009 and prior editions as the report on China military power), and (for U.S. Navy ships) U.S. Navy data as presented in CRS Report RL32665, Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress, by Ronald O’Rourke.

Notes: n/a means data not available in report. LST means tank landing ship; LPD means transport dock ship; LSM means medium landing ship. The DOD report generally covers events of the prior calendar year. Thus, the 2019 edition covers events during 2018, and so on for earlier years. Similarly, for the U.S. Navy figures, the 2019 column shows the figure for the end of FY2018, and so on for earlier years.
Table 2 shows comparative numbers of Chinese and U.S. battle force ships. Battle force ship are the types of ships that count toward the quoted size of the Navy. For China, the battle force ships total excludes the missile-armed coastal patrol craft shown in Table 1, but includes auxiliary and support ships that are not shown in Table 1. Compared to the comparison shown in Table 1, the comparison Table 2 is closer to being an apples-to-apples comparison of the two navies’ numbers of ships. Even so, it is important to keep in mind the differences in composition between the two navies. The U.S. Navy, for example, has many more aircraft carriers, nuclear-powered submarines, and cruisers and destroyers, while China’s navy has many more diesel attack submarines, frigates, and corvettes.

Table 2. Numbers of Battle Force Ships, 2000-2030
Figures include both less-capable older units and more-capable newer units

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic missile submarines</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Nuclear-powered attack submarines</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Diesel attack submarines</td>
<td>56</td>
<td>56</td>
<td>48</td>
<td>53</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Aircraft carriers, cruisers, destroyers</td>
<td>19</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>43</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>Frigates, corvettes</td>
<td>38</td>
<td>43</td>
<td>50</td>
<td>74</td>
<td>102</td>
<td>120</td>
<td>135</td>
</tr>
<tr>
<td>Total China navy battle force ships, including types not shown above</td>
<td>110</td>
<td>220</td>
<td>220</td>
<td>255</td>
<td>360</td>
<td>400</td>
<td>425</td>
</tr>
<tr>
<td>Total U.S. Navy battle force ships</td>
<td>318</td>
<td>282</td>
<td>288</td>
<td>271</td>
<td>297</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Source: Table prepared by CRS. Source for China’s navy: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, 4 pp. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission. Figures are for end of calendar year. Source for figures for U.S. Navy: U.S. Navy data; figures are for end of fiscal year.

Note: n/a means not available.

Relative U.S. and Chinese naval capabilities are sometimes assessed by showing comparative numbers of U.S. and Chinese ships. Although the total number of ships in a navy (or its aggregate tonnage) is relatively easy to calculate, it is a one-dimensional measure that leaves out numerous other factors that bear on a navy’s capabilities and how those capabilities compare to its assigned missions. As a result, as discussed in further detail in Appendix A, comparisons of the total numbers of ships in the PLAN and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to those navies. At the same time however, an examination of the trends over time in the relative numbers of ships can shed some light on how the relative balance of U.S. and Chinese naval capabilities might be changing over time.

U.S. Navy Response

The U.S. Navy in recent years has taken a number of actions to counter China’s naval modernization effort. Among other things, the U.S. Navy has

- shifted a greater percentage of its fleet to the Pacific;74

74 Efforts in this regard began at least as far back as 2006: The final report on the 2006 Quadrennial Defense Review
assigned its most capable new ships and aircraft and its best personnel to the Pacific;
• maintained or increased general presence operations, training and developmental exercises, and engagement and cooperation with allied and other navies in the Indo-Pacific;
• increased the planned future size of the Navy;
• initiated, increased, or accelerated numerous programs for developing new military technologies and acquiring new ships, aircraft, unmanned vehicles, and weapons;
• begun development of new operational concepts (i.e., new ways to employ Navy and Marine Corps forces) for countering Chinese maritime A2/AD forces; and
• signaled that the Navy in coming years will shift to a more distributed fleet architecture that will feature a smaller portion of larger ships, a larger portion of smaller ships, and a substantially greater use of unmanned vehicles.

U.S. Navy efforts to increase cooperation with naval forces from allies and other countries such as Japan, Australia, and India appear aimed in part at expanding existing bilateral forms of naval cooperation (e.g., U.S.-Japan, U.S.-Australia, U.S.-India) into trilateral (e.g., U.S.-Japan-Australia, U.S.-Australia-India) or quadrilateral (U.S.-Japan-Australia-India) forms that could support the Trump Administration’s overarching security and foreign policy construct for the Indo-Pacific region, called the Free and Open Indo-Pacific (FOIP).

The increase in the planned size of the Navy is detailed in detail in another CRS report.

Many of the Navy’s programs for acquiring highly capable ships, aircraft, and weapon systems can be viewed as intended, at least in part, at improving the U.S. Navy’s ability to counter Chinese maritime A2/AD capabilities. Examples of new technologies being developed by the Navy that might be of value in countering Chinese maritime A2/AD capabilities include large unmanned vehicles,77 lasers, the electromagnetic rail gun (EMRG), and the gun-launched guided projectile (aka hypervelocity projectile).78

Navy and Marine Corps efforts to develop new operational concepts such as Distributed Maritime Operations (DMO) and Expeditionary Advanced Base Operations (EABO), and to shift to a more distributed fleet architecture, are discussed in detail in other CRS reports.79

75 For more on the FOIP, see CRS Report R45396, The Trump Administration’s “Free and Open Indo-Pacific”: Issues for Congress, coordinated by Bruce Vaughn.
77 For more on these efforts, see CRS Report R45757, Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress, by Ronald O'Rourke.
78 For more on these efforts, see CRS Report R44175, Navy Lasers, Railgun, and Gun-Launched Guided Projectile: Background and Issues for Congress, by Ronald O'Rourke.
Issues for Congress

Overview

The overall issue for Congress is whether the U.S. Navy is responding appropriately to China’s naval modernization effort. Within this overall issue, specific issues include the following:

- the current and potential future U.S.-China balance of naval power in general, and in specific geographic areas, particularly the South China Sea;
- whether the planned size of the Navy will be appropriate for countering China’s naval modernization effort in coming years while also permitting the Navy to perform other missions, including countering Russian military forces and defending U.S. interests in the Middle East;
- whether the Navy should shift to a more-distributed fleet architecture so as to improve the Navy’s ability to avoid and withstand attack from Chinese maritime A2/AD forces—and if so, what that new architecture should look like, and how quickly the Navy should shift to it;
- whether the Navy is doing enough to
 - improve its ability to counter China’s ASBMs or some of China’s other maritime A2/AD weapons, such as its wake-homing torpedoes;
 - develop and procure new ASCMs with ranges that match or exceed those of China’s longer-ranged ASCMs;
 - increase the operating range of Navy carrier air wings, so as to improve the ability of carriers and their air wings to achieve effects while operating at longer distances from Chinese ASBMs and other A2/AD weapons; and
- whether Congress should modify acquisition policies or the metrics for judging the success of acquisition programs so as to facilitate faster development of new technologies and weapons for the Navy—and if so, how those policies or metrics should be modified.

Discussion

Regarding the U.S.-China balance of naval power in general, U.S. and other observers generally assess that while the United States today has more naval capability overall, China’s naval modernization effort since the 1990s has substantially reduced the U.S. advantage, and that if current U.S. and Chinese naval capability trend lines (such as those shown in Table 1 and Table 2) do not change, China might eventually draw even with or surpass the United States in overall naval capability.

Regarding the current U.S.-China naval balance of power specifically in the South China Sea, some observers are concerned that China has already drawn even with or even surpassed the United States. U.S. Navy Admiral Philip Davidson, in responses to advance policy questions from the Senate Armed Services Committee for an April 17, 2018, hearing before the committee to consider nominations, including Davidson’s nomination to become Commander, U.S. Pacific Command (PACOM), stated that “China is now capable of controlling the South China Sea in

80 The name of the command has since been changed to the U.S. Indo-Pacific Command (INDOPACOM).
all scenarios short of war with the United States.”

A January 18, 2020, press report quotes James Kraska of the Naval War College as stating that “the US has lost advantage throughout the spectrum of operations, from low-level interaction against China’s maritime militia to higher-end conflict scenarios,” and that “in other words, China has escalation dominance, because it has the power to deter any US turn towards escalation. The US is outmatched in all of the scenarios.”

Skeptics of assessments like those above might argue that they do not give adequate weight to relative U.S. strengths (and corresponding Chinese relative weaknesses and limitations) in areas such as undersea warfare; personnel quality, training, and initiative; operational experience (particularly in combat situations); joint operations with other U.S. military services; and potential support from allies and partners, particularly Japan and Australia.

The above-listed issues of the planned size of the Navy and the shift to a more-distributed fleet architecture are discussed in detail in other CRS reports. The issue of the Navy’s ability to counter China’s ASBMs is discussed in detail in this report in Appendix B. The issue of the Navy’s ability to counter wake-homing torpedoes may have been made more pressing by the reportedly poor performance of an anti-torpedo torpedo that the Navy was developing as a means for Navy surface ships to counter hard-to-decay wake-homing torpedoes and other torpedoes. The Navy now reportedly plans to remove the anti-torpedo torpedo system from the ships that were equipped with it.

The Navy in recent years has initiated efforts to develop and procure longer ranged ASCMs, but some observers have expressed frustration that these efforts are not moving quickly enough. In support of its efforts, the Navy testified in March 2020 that

The Navy’s offensive strike systems consist of a broad family of current and future weapons that together can and will strike from the sea, air, and land. These weapons capitalize on key system attributes (e.g. speed, range, lethality, survivability, and commonality) with a strong focus on delivering ‘multi-domain’ capabilities. The Navy Department’s Offensive Missile Strategy (OMS) supports a wider, more systematic approach towards delivering offensive weapons balance to increase overall force effectiveness to address emerging threats.

Our current OMS construct has three pillars. First, the Department will sustain relevant weapon systems. Our objective is to preserve the readiness and capacity of our key strike weapons inventories. Second, the Department will pursue strike weapon capability enhancements. Under this initiative, the Navy will develop near-term capability upgrades to enhance existing weapons that provide critical improvements to our current long-range

81 Advance Policy Questions for Admiral Philip Davidson, USN Expected Nominee for Commander, U.S. Pacific Command, p. 18. See also pp. 8, 16, 17, 19, and 43.

strike weapons capabilities (e.g. Maritime Strike Tomahawk (MST), LRASM V1.1, SM-6/Block 1B, and the Naval Strike Missile). Third, the Department will develop next-generation strike missile capabilities to address emerging threats.

The OMS is reviewed annually based on current capabilities and emerging threats, and updated to leverage analytical processes/study updates. The results are used to inform annual RDT&E and procurement funding priorities to achieve an optimal mix of offensive strike missile system capabilities. The 2020 OMS is currently being finalized and is a classified document. Additional details about next generation weapons development can be provided in a classified setting.

The issue of the operating range of Navy carrier air wings is a key component of an ongoing debate over the future survivability, utility, and cost-effectiveness of aircraft carriers and their air wings, with critics arguing that the current operating range of Navy carrier air wings will force Navy aircraft carriers to operate well within the ranges of Chinese ASBMs or other A2/AD systems, which could put the carriers’ survivability at substantial risk, or alternatively require carriers to operate beyond the range of those Chinese A2/AD systems, in locations that are safer but so far away that the carriers and their air wings will contribute little combat capability.

A key U.S. Navy program for increasing the operating range of Navy carrier air wings is the MQ-25 Stingray program, which is a program to acquire a carrier-based unmanned aerial vehicle (UAV) for use as a tanker for in-flight refueling of manned carrier-based aircraft (with a secondary mission of intelligence, surveillance, and reconnaissance). Some observers, while not necessarily objecting to the MQ-25 program, argue that the Navy should do more to increase the operating range of Navy carrier air wings, such as developing a stealthy, carrier-based UAV capable of penetrating enemy air defenses and striking land targets at very long ranges.

The issue of acquisition policies and the metrics for judging their success is discussed in more detail in another CRS report.

Legislative Activity for FY2021

The Navy’s proposed FY2021 budget was submitted on February 10, 2020.

Coverage in Related CRS Reports

A variety of CRS reports cover U.S. Navy programs that in varying degrees can be viewed as responses to, among other things, China’s naval modernization effort. These reports include but are not limited to the following:

- CRS Report RL32665, Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress, by Ronald O'Rourke
- CRS Report RS20643, Navy Ford (CVN-78) Class Aircraft Carrier Program: Background and Issues for Congress, by Ronald O'Rourke

- CRS Report RL30563, *F-35 Joint Strike Fighter (JSF) Program*, by Jeremiah Gertler (the JSF program is a joint DOD program with Navy participation)
- CRS Report RL32109, *Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress*, by Ronald O'Rourke
- CRS Report R44972, *Navy Frigate (FFG[X]) Program: Background and Issues for Congress*, by Ronald O'Rourke
- CRS Report R45757, *Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress*, by Ronald O'Rourke

House

The House Armed Services Committee, in its report (H.Rept. 116-442 of July 9, 2020) on H.R. 6395, states “The committee continues to support the 355-ship fleet codified in the National Defense Authorization Act for Fiscal Year 2018 (Public Law 115–91) as an essential part of the National Defense Strategy and its emphasis on near-peer competitors such as Russia and China.” (Page 17)

Section 1265 of H.R. 6395 as reported by the committee states

SEC. 1265. REPORT ON DIRECTED USE OF FISHING FLEETS.

Not later than 180 days after the date of the enactment of this Act, the Commander of the Office of Naval Intelligence shall submit to the congressional defense committees, the Committee on Foreign Affairs of the House of Representatives, and the Committee on Foreign Relations of the Senate an unclassified report on the use of distant-water fishing fleets by foreign governments as extensions of such countries’ official maritime security forces, including the manner and extent to which such fishing fleets are leveraged in support of naval operations and foreign policy more generally. The report shall also consider the threats, on a country-by-country basis, posed by such use of distant-water fishing fleets to—

(1) fishing or other vessels of the United States and partner countries;

(2) United States and partner naval and coast guard operations; and

(3) other interests of the United States and partner countries.

Senate

The Senate Armed Services Committee, in its report (S.Rept. 116-236 of June 24, 2020) on S. 4049, states “The committee continues to support the national policy of achieving at least a 355-ship fleet, as codified in the National Defense Authorization Act for Fiscal Year 2018 (Public Law
115–91), which is integral to the National Defense Strategy and its emphasis on near-peer competition with Russia and China.” (Page 49)

S.Rept. 116-236 also states

Anti-ship missile development

The committee is encouraged by increased attention across the Department of Defense to the surface warfare mission area, including several new anti-ship missile (ASM) programs. However, the committee desires greater clarity on Joint Force ASM requirements, development efforts, and acquisition strategies. The committee is interested in ensuring that rigorous ASM requirements exist tied to specific threats and operational concepts, development efforts are rationalized where possible, and acquisition strategies are streamlined.

Therefore, the committee directs the Vice Chairman of the Joint Chiefs of Staff, the Under Secretary of Defense for Research and Engineering, and the Under Secretary of Defense for Acquisition and Sustainment, in consultation with the Secretaries of the military departments, to submit a report to the congressional defense committees not later than December 1, 2020, on Joint Force ASM requirements, development efforts, and acquisition strategies.

This report shall include the following elements: (1) A description of Joint Requirements Oversight Council-validated (JROC-validated) requirements for ASMs, including inventory objectives and capabilities required for each ASM, such as range, speed, seeker performance, and data link requirements; (2) A description of other Department of Defense requirements for ASMs that have not been validated by the JROC, including inventory objectives and capabilities required for each ASM, such as range, speed, seeker performance, and data link requirements; (3) A description of the development efforts supporting each ASM program listed under (1) and (2), such as prototyping subsystems, investigating use of common components, conducting developmental testing, conducting operational testing, and engaging in other forms of risk reduction; and (4) A description of the acquisition strategies, if applicable, for each ASM program listed under (1) and (2) above. (Pages 44-45)

S.Rept. 116-236 also states

Increase in basic research, Navy

The budget request included $467.2 million in Research, Development, Test, and Evaluation (RDT&E), Navy, for PE 61153N Defense Research Sciences.

The committee recognizes the “increasingly complex security environment” detailed in the National Defense Strategy and born from rapid technological change, challenges from adversaries in every operating domain, and decreased readiness derivative of the longest continuous stretch of armed conflict in U.S. history. Accordingly, it is crucial to adequately fund, resource, and structure the Department of Defense to conduct RDT&E activities for critical emerging technologies to stay ahead of our adversaries, most notably Russia and China. Resources must be devoted and responsibly spent toward research and development of artificial intelligence, quantum computing, hypersonics, directed energy, biotechnology, autonomy, cyber, space, 5G, microelectronics, and fully networked command, control, and communications technologies. As such, the committee encourages rapid development, prototyping, testing, and acquisition of these emerging technologies in order to remain ahead of our adversaries.

Therefore, the committee recommends an increase of $10.0 million in RDT&E, Navy, for PE 61153N Defense Research Sciences to support additional basic research. (Page 93)

Section 1251 of S. 4049 as reported by the committee states
SEC. 1251. PACIFIC DETERRENCE INITIATIVE.

(a) In General.—The Secretary of Defense shall carry out an initiative to ensure the effective implementation of the National Defense Strategy with respect to the Indo-Pacific region, to be known as the “Pacific Deterrence Initiative” (in this section referred to as the “Initiative”).

(b) Purpose.—The purpose of the Initiative is to carry out only the following activities:

1. Activities to increase the lethality of the joint force in the Indo-Pacific region, including, but not limited to—

 A. by improving active and passive defenses against theater cruise, ballistic, and hypersonic missiles for bases, operating locations, and other critical infrastructure at locations west of the International Date Line; and

 B. procurement and fielding of—

 i. long-range precision strike systems to be stationed or pre-positioned west of the International Date Line;

 ii. critical munitions to be pre-positioned at locations west of the International Date Line; and

 iii. command, control, communications, computers and intelligence, surveillance, and reconnaissance systems intended for stationing or operational use in the Indo-Pacific region.

2. Activities to enhance the design and posture of the joint force in the Indo-Pacific region, including, but not limited to, by—

 A. transitioning from large, centralized, and unhardened infrastructure to smaller, dispersed, resilient, and adaptive basing at locations west of the International Date Line;

 B. increasing the number and capabilities of expeditionary airfields and ports in the Indo-Pacific region available for operational use at locations west of the International Date Line;

 C. enhancing pre-positioned forward stocks of fuel, munitions, equipment, and materiel at locations west of the International Date Line;

 D. increasing the availability of strategic mobility assets in the Indo-Pacific region;

 E. improving distributed logistics and maintenance capabilities in the Indo-Pacific region to ensure logistics sustainment while under persistent multidomain attack; and

 F. increasing the presence of the Armed Forces at locations west of the International Date Line.

3. Activities to strengthen alliances and partnerships, including, but not limited to, by—

 A. building capacity of allies and partners; and

 B. improving—

 i. interoperability and information sharing with allies and partners; and

 ii. information operations capabilities in the Indo-Pacific region, with a focus on reinforcing United States commitment to allies and partners and countering malign influence.

4. Activities to carry out a program of exercises, experimentation, and innovation for the joint force in the Indo-Pacific region.

(c) Plan Required.—Not later than February 15, 2021, the Secretary, in consultation with the Commander of the United States Indo-Pacific Command, shall submit to the
congressional defense committees a plan to expend not less than the amounts authorized to be appropriated under subsection (e)(2).

(d) Budget Display Information.—The Secretary shall include in the materials of the Department of Defense in support of the budget of the President (submitted to Congress pursuant to section 1105 of title 31, United States Code) for fiscal year 2022 and each fiscal year thereafter a detailed budget display for the Initiative that includes the following information:

1) A future-years plan with respect to activities and resources for the Initiative for the applicable fiscal year and not fewer than the four following fiscal years.

2) With respect to procurement accounts—
(A) amounts displayed by account, budget activity, line number, line item, and line item title; and
(B) a description of the requirements for such amounts specific to the Initiative.

3) With respect to research, development, test, and evaluation accounts—
(A) amounts displayed by account, budget activity, line number, program element, and program element title; and
(B) a description of the requirements for such amounts specific to the Initiative.

4) With respect to operation and maintenance accounts—
(A) amounts displayed by account title, budget activity title, line number, and subactivity group title; and
(B) a description of the specific manner in which such amounts will be used.

5) With respect to military personnel accounts—
(A) amounts displayed by account, budget activity, budget subactivity, and budget subactivity title; and
(B) a description of the requirements for such amounts specific to the Initiative.

6) With respect to each project under military construction accounts (including with respect to unspecified minor military construction and amounts for planning and design), the country, location, project title, and project amount by fiscal year.

7) With respect to the activities described in subsection (b)—
(A) amounts displayed by account title, budget activity title, line number, and subactivity group title; and
(B) a description of the specific manner in which such amounts will be used.

8) With respect to each military service—
(A) amounts displayed by account title, budget activity title, line number, and subactivity group title; and
(B) a description of the specific manner in which such amounts will be used.

9) With respect to the amounts described in each of paragraphs (2)(A), (3)(A), (4)(A), (5)(A), (6), (7)(A), and (8)(A), a comparison between—
(A) the amount in the budget of the President for the following fiscal year; and
(B) the amount projected in the previous budget of the President for the following fiscal year.
(e) Authorization Of Appropriations.—There are authorized to be appropriated to the Secretary to carry out the activities of the Initiative described in subsection (b) the following:

(1) For fiscal year 2021, $1,406,417,000, as specified in the funding table in section 4502.

(2) For fiscal year 2022, $5,500,000,000.

Regarding Section 1251, S.Rept. 116–236 states

Pacific Deterrence Initiative (sec. 1251)

The committee recommends a provision that would require the Secretary of Defense to carry out the Pacific Deterrence Initiative (PDI) to ensure the effective implementation of the National Defense Strategy with respect to the Indo-Pacific region. The provision would describe the activities to be carried out under the PDI: (1) Activities to increase the lethality of the Joint Force in the Indo-Pacific region; (2) Activities to enhance the design and posture of the Joint Force in the Indo-Pacific region; (3) Activities to strengthen alliances and partnerships; and (4) Activities to carry out a program of exercises, experimentation, and innovation for the Joint Force in the Indo-Pacific region. The provision would authorize $1.4 billion to be appropriated for the Secretary to carry out PDI in fiscal year 2021, as specified in the funding table in section 4502.

The provision would also authorize $5.5 billion to be appropriated for the Secretary to carry out the PDI in fiscal year 2022. Not later than February 15, 2021, the provision would require the Secretary, in consultation with the Commander, U.S. Indo-Pacific Command, to submit to the congressional defense committees a plan to expend not less than the amounts authorized to be appropriated for the Secretary to carry out the PDI in fiscal year 2022.

The committee notes that the provision would emphasize that specific activities to be carried out under the PDI, particularly those related to the lethality of the Joint Force and the design and posture of the Joint Force, should be focused in and with respect to locations west of the International Date Line. In this way, the committee believes that the PDI will bolster the “contact” and “blunt” layers described by the Global Operating Model of the National Defense Strategy to maintain the credibility of American deterrence against adversarial aggression in the Indo-Pacific region.

The committee encourages the Secretary of Defense to consider whether a named operation in the Indo-Pacific would improve the execution of the PDI, including through more predictable and sustainable funding, improved joint planning and coordination of training and exercise activities, and increased support for deployments of rotational forces.

The committee notes that the PDI is designed to further the strategic and policy objectives articulated by Congress in the Asia Reassurance Initiative Act (Public Law 115–409) and by the executive branch in the National Security Strategy, the “Free and Open Indo-Pacific” strategy of the Department of State, the National Defense Strategy, and the Indo-Pacific strategy report of the Department of Defense.

The committee notes that the provision would require the Department of Defense to submit detailed budgetary display information associated with the PDI in future budget requests.
The committee believes that the availability of budgetary data organized according to regional missions and the priorities of the combatant commands is critical for the ability of the Department and the Congress to assess the implementation of the National Defense Strategy. Furthermore, a budgetary display is included elsewhere in this Act that captures spending related to the PDI. The committee encourages the Department of Defense to continue working with the Congress to improve budgetary transparency in support of its oversight responsibilities. (Pages 301-302)
Appendix A. Comparing U.S. and Chinese Naval Capabilities

This appendix presents some additional discussion of factors involved in comparing U.S. and Chinese naval capabilities.

U.S. and Chinese naval capabilities are sometimes compared by showing comparative numbers of U.S. and Chinese ships. Although the total number of ships in a navy (or its aggregate tonnage) is relatively easy to calculate, it is a one-dimensional measure that leaves out numerous other factors that bear on a navy’s capabilities and how those capabilities compare to its assigned missions. One-dimensional comparisons of the total numbers of ships in China’s navy and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to those navies, for the following reasons:

- **A fleet’s total number of ships (or its aggregate tonnage) is only a partial metric of its capability.** Many factors other than ship numbers (or aggregate tonnage) contribute to naval capability, including types of ships, types and numbers of aircraft, the sophistication of sensors, weapons, C4ISR systems, and networking capabilities, supporting maintenance and logistics capabilities, doctrine and tactics, the quality, education, and training of personnel, and the realism and complexity of exercises. In light of this, navies with similar numbers of ships or similar aggregate tonnages can have significantly different capabilities, and navy-to-navy comparisons of numbers of ships or aggregate tonnages can provide a highly inaccurate sense of their relative capabilities. In recent years, the warfighting capabilities of navies have derived increasingly from the sophistication of their internal electronics and software. This factor can vary greatly from one navy to the next, and often cannot be easily assessed by outside observation. As the importance of internal electronics and software has grown, the idea of comparing the warfighting capabilities of navies principally on the basis of easily observed factors such as ship numbers and tonnages has become increasingly less reliable, and today is highly problematic.

- **Total numbers of ships of a given type (such as submarines or surface combatants) can obscure potentially significant differences in the capabilities of those ships, both between navies and within one country’s navy.** Differences in capabilities of ships of a given type can arise from a number of other factors, including sensors, weapons, C4ISR systems, networking capabilities, stealth features, damage-control features, cruising range, maximum speed, and reliability and maintainability (which can affect the amount of time the ship is available for operation).

- **A focus on total ship numbers reinforces the notion that changes in total numbers necessarily translate into corresponding or proportional changes in aggregate capability.** For a Navy like China’s, which is modernizing by replacing older, obsolescent ships with more modern and more capable ships, this is not necessarily the case. As shown in Table 1 and Table 2, for example, China’s attack submarine force today has only a slightly larger number of boats than it had in 2000 or 2005, but it has considerably more aggregate capability than it did in 2000 or 2005, because the force today includes a much larger percentage of relatively modern designs.
Comparisons of total numbers of ships (or aggregate tonnages) do not take into account the differing global responsibilities and homeporting locations of each fleet. The U.S. Navy has substantial worldwide responsibilities, and a substantial fraction of the U.S. fleet is homeported in the Atlantic. As a consequence, only a certain portion of the U.S. Navy might be available for a crisis or conflict scenario in China’s near-seas region, or could reach that area within a certain amount of time. In contrast, China’s navy has more-limited responsibilities outside China’s near-seas region, and its ships are all homeported along China’s coast at locations that face directly onto China’s near-seas region. In a U.S.-China conflict inside the first island chain, U.S. naval and other forces would be operating at the end of generally long supply lines, while Chinese naval and other forces would be operating at the end of generally short supply lines.

Comparisons of numbers of ships (or aggregate tonnages) do not take into account maritime-relevant military capabilities that countries might have outside their navies, such as land-based anti-ship ballistic missiles (ASBMs), land-based anti-ship cruise missiles (ASCMs), and land-based Air Force aircraft armed with ASCMs or other weapons. Given the significant maritime-relevant non-navy forces present in both the U.S. and Chinese militaries, this is a particularly important consideration in comparing U.S. and Chinese military capabilities for influencing events in the Western Pacific. Although a U.S.-China incident at sea might involve only navy units on both sides, a broader U.S.-China military conflict would more likely be a force-on-force engagement involving multiple branches of each country’s military.

The missions to be performed by one country’s navy can differ greatly from the missions to be performed by another country’s navy. Consequently, navies are better measured against their respective missions than against one another. Although Navy A might have less capability than Navy B, Navy A might nevertheless be better able to perform Navy A’s intended missions than Navy B is to perform Navy B’s intended missions. This is another significant consideration in assessing U.S. and Chinese naval capabilities, because the missions of the two navies are quite different.

A 2015 RAND report attempts to take factors like those discussed above more fully into account with the aim of producing a more comprehensive assessment of relative U.S. and Chinese military capabilities for potential conflict scenarios involving Taiwan and the Spratly Islands in the South China Sea. The report states the following:

Over the past two decades, China’s People’s Liberation Army (PLA) has transformed itself from a large but antiquated force into a capable, modern military. In most areas, its technology and skill levels lag behind those of the United States, but it has narrowed the gap. Moreover, it enjoys the advantage of proximity in most plausible scenarios and has developed capabilities that capitalize on that advantage.

... four broad trends emerge:

• Since 1996, the PLA has made tremendous strides, and, despite improvements to the U.S. military, the net change in capabilities is moving in favor of China. Some aspects of Chinese military modernization, such as improvements to PLA ballistic missiles, fighter aircraft, and attack submarines, have come extraordinarily quickly by any reasonable historical standard.

• The trends vary by mission area, and relative Chinese gains have not been uniform across all areas. In some areas, U.S. improvements have given the United States new options, or
at least mitigated the speed at which Chinese military modernization has shifted the relative balance.

• Distances, even relatively short distances, have a major impact on the two sides’ ability to achieve critical objectives. Chinese power projection capabilities are improving, but present limitations mean that the PLA’s ability to influence events and win battles diminishes rapidly beyond the unrefueled range of jet fighters and diesel submarines. This is likely to change in the years beyond those considered in this report, though operating at greater distances from China will always work, on balance, against China.

• The PLA is not close to catching up to the U.S. military in terms of aggregate capabilities, but it does not need to catch up to the United States to dominate its immediate periphery. The advantages conferred by proximity severely complicate U.S. military tasks while providing major advantages to the PLA. This is the central finding of this study and highlights the value of campaign analysis, rather than more abstract assessments of capabilities.

Over the next five to 15 years, if U.S. and PLA forces remain on roughly current trajectories, Asia will witness a progressively receding frontier of U.S. dominance. The United States would probably still prevail in a protracted war centered in virtually any area, and Beijing should not infer from the above generalization that it stands to gain from conflict. U.S. and Chinese forces would likely face losses on a scale that neither has suffered in recent decades. But PLA forces will become more capable of establishing temporary local air and naval superiority at the outset of a conflict. In certain regional contingencies, this temporal or local superiority might enable the PLA to achieve limited objectives without “defeating” U.S. forces. Perhaps even more worrisome from a military-political perspective, the ability to contest dominance might lead Chinese leaders to believe that they could deter U.S. intervention in a conflict between it and one or more of its neighbors. This, in turn, would undermine U.S. deterrence and could, in a crisis, tip the balance of debate in Beijing as to the advisability of using force....

Although trends in the military balance are running against the United States, there are many actions that the United States could take to reinforce deterrence and continue to serve as the ultimate force for stability in the Western Pacific.88

As mentioned earlier, while comparisons of the total numbers of ships in the PLAN and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to those navies, an examination of the trends over time in the relative numbers of ships can shed some light on how the relative balance of U.S. and Chinese naval capabilities might be changing over time.

Appendix B. U.S. Navy’s Ability to Counter Chinese ASBMs

This appendix provides additional discussion of the issue of the U.S. Navy’s ability to counter China’s ASBMs.

Although China’s projected ASBM, as a new type of weapon, might be considered a “game changer,” that does not mean it cannot be countered. There are several potential approaches for countering an ASBM that can be imagined, and these approaches could be used in combination. The ASBM is not the first “game changer” that the Navy has confronted; the Navy in the past has developed counters for other new types of weapons, such as ASCMs, and is likely exploring various approaches for countering ASBMs.

Countering China’s projected ASBMs could involve employing a combination of active (i.e., “hard-kill”) measures, such as shooting down ASBMs with interceptor missiles, and passive (i.e., “soft-kill”) measures, such as those for masking the exact location of Navy ships or confusing ASBM reentry vehicles. Employing a combination of active and passive measures would attack various points in the ASBM “kill chain”—the sequence of events that needs to be completed to carry out a successful ASBM attack. This sequence includes detection, identification, and localization of the target ship, transmission of that data to the ASBM launcher, firing the ASBM, and having the ASBM reentry vehicle find the target ship.

Attacking various points in an opponent’s kill chain is an established method for countering an opponent’s military capability. A September 30, 2011, press report, for example, quotes Lieutenant General Herbert Carlisle, the Air Force’s deputy chief of staff for operations, plans, and requirements, as stating in regard to Air Force planning that “We’ve taken [China’s] kill chains apart to the ‘nth’ degree.”

To attack the ASBM kill chain, Navy surface ships, for example, could operate in ways (such as controlling electromagnetic emissions or using deception emitters) that make it more difficult for China to detect, identify, and track those ships. The Navy could acquire weapons and systems for disabling or jamming China’s long-range maritime surveillance and targeting systems, for attacking ASBM launchers, for destroying ASBMs in various stages of flight, and for decoying and confusing ASBMs as they approach their intended targets. Options for destroying ASBMs in flight include the SM-3 midcourse BMD interceptor missile (including the new Block IIA).

version), the SM-6 terminal-defense BMD interceptor missile,91 and accelerating development and deployment of the hypervelocity projectile (HVP), electromagnetic rail gun (EMRG), and solid state lasers (SSLs).92 Options for decoying and confusing ASBMs as they approach their intended targets include equipping ships with systems, such as electronic warfare systems or systems for generating radar-opaque smoke clouds or radar-opaque carbon-fiber clouds, that could confuse an ASBM’s terminal-guidance radar.93

An October 4, 2016, press report states the following:

Several times in the past, [Chief of Naval Operations John] Richardson has stressed that long range weapons developments from adversarial nations like Russia and China aren’t the end-all, be-all of naval conflicts.

Just because China’s “carrier-killer” missile has a greater range than the planes aboard a US aircraft carrier doesn't mean the US would shy away from deploying a carrier within that range. Richardson has stated on different occasions.

Again, Richardson challenged the notion that a so-called A2/AD zone was “an impenetrable keep out zone that forces can only enter at extreme peril to their existence, let alone their mission.”

Richardson took particular issue with the “denial” aspect of A2/AD, repeating his assertion that this denial is an “aspiration” not a “fait accompli.” The maps so common in representing these threats often mark off the limits of different system's ranges with “red arcs that extend off coastlines,” with the implication that military forces crossing these lines face “certain destruction.”

But this is all speculation according to Richardson: “The reality is far more complex, it's actually really hard to achieve a hit. It requires the completion of a really complex chain of events.... these arcs represent danger for sure... but the threats they are based on are not insurmountable, and can be managed, will be managed.”

“We can fight from within these defended areas, and we will... this is nothing new and has been done before,” said Richardson.

So while Russia and China can develop missiles and radars and declare their ranges on paper, things get a lot trickier in the real world, where the US has the most and best experience in operating.

“Potential adversaries actually have different geographic features like choke points, islands, ocean currents, mountains,” said Richardson, who urged against oversimplifying complicated, and always unique circumstances in so-called A2/AD zones.

“No doubt, the US navy is prepared to go wherever it needs to go, at any time, and stay there for as long as necessary in response to our leadership’s call to project our strategic influence,” Richardson concluded.

91 For more on the SM-3, including the Block IIA version, and the SM-6, see CRS Report RL33745, Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress, by Ronald O'Rourke.

92 For more on HVP, EMRG, and SSLs, see CRS Report R44175, Navy Lasers, Railgun, and Gun-Launched Guided Projectile: Background and Issues for Congress, by Ronald O'Rourke.

Similarly, an August 29, 2016, press report states the following:

The United States Navy is absolutely confident in the ability of its aircraft carriers and carrier air wings to fly and fight within zones defended by so-called anti-access/area denial (A2/AD) weapons.

In the view of the U.S. Navy leadership, A2/AD—as it is now called—has existed since the dawn of warfare when primitive man was fighting with rocks and spears. Overtime, A2/AD techniques have evolved as technology has improved with ever-greater range and lethality. Rocks and spears eventually gave way to bows and arrows, muskets and cannons. Thus, the advent of long-range anti-ship cruise and ballistic missiles is simply another technological evolution of A2/AD.

“This is the next play in that,” Adm. John Richardson, chief of naval operations, told The National Interest on Aug. 25 during an interview in his office in the Pentagon. “This A2/AD, well, it’s certainly a goal for some of our competitors, but achieving that goal is much different and much more complicated.”

Indeed, as many U.S. Navy commanders including Richardson and Rear Adm. (Upper Half) DeWolfe Miller, the service’s director of air warfare, have pointed out, anti-access bubbles defended by Chinese DF-21D or DF-26 anti-ship ballistic missile systems or Russian Bastion-P supersonic anti-ship missile systems are not impenetrable ‘Iron Domes.’ Nor do formidable Russian and Chinese air defense systems such as the S-400 or HQ-9 necessarily render the airspace they protect into no-go zones for the carrier air wing.

 Asked directly if he was confident in the ability of the aircraft carrier and its air wing to fight inside an A2/AD zone protected by anti-ship cruise and ballistic missiles as well as advanced air defenses, Richardson was unequivocal in his answer. “Yes,” Richardson said—but he would not say how exactly how due to the need for operational security. “It’s really a suite of capabilities, but I actually think we’re talking too much in the open about some of the things we’re doing, so I want to be thoughtful about how we talk about things so we don’t give any of our competitors an advantage.”...

Miller said that there have been threats to the carrier since the dawn of naval aviation. In many ways, the threat to the carrier was arguably much greater during the Cold War when the Soviet Union massed entire regiments of Tupolev Tu-22M3 Backfires and deployed massive cruise missile-armed Oscar-class SSGN submarines to hunt down and destroy the Navy’s flattops. The service developed ways to defeat the Soviet threat—and the carrier will adapt to fight in the current environment.

“We could have had this interview twenty-years-ago and there would have been a threat,” Miller said. “The nature of war and A2/AD is not new—that’s my point. I don’t want to downplay it, but our improvements in information warfare, electronic warfare, payloads, the weapons systems that we’ve previously talked about—plus our ability to train to those capabilities that we have—we will create sanctuaries, we’ll fight in those sanctuaries and we’re a maneuver force.”

An October 18, 2017, blog post states the following:

Assuming the DF-21D is ready for battle, can America defend against China’s mighty missile?

While opinions are clearly mixed—in speaking to many sources over the last several years on this topic—it seems clear there is great nervousness in U.S. defense circles. However, as time has passed, initial fears have turned towards a more optimistic assessment....

In the end, the weapon might not be the great “game-changer” that many point it out to be, but a great complicator.95

Author Information

Ronald O'Rourke
Specialist in Naval Affairs

Disclaimer

This document was prepared by the Congressional Research Service (CRS). CRS serves as nonpartisan shared staff to congressional committees and Members of Congress. It operates solely at the behest of and under the direction of Congress. Information in a CRS Report should not be relied upon for purposes other than public understanding of information that has been provided by CRS to Members of Congress in connection with CRS’s institutional role. CRS Reports, as a work of the United States Government, are not subject to copyright protection in the United States. Any CRS Report may be reproduced and distributed in its entirety without permission from CRS. However, as a CRS Report may include copyrighted images or material from a third party, you may need to obtain the permission of the copyright holder if you wish to copy or otherwise use copyrighted material.