Federal Civil Aviation Programs: In Brief

Updated February 27, 2018
Contents

Introduction .. 1
The Airport and Airways Trust Fund ... 1
FAA Funding Accounts .. 3
Airport Financing ... 4
FAA Management and Organizational Issues ... 5
 Air Traffic Controller Workforce .. 5
 Facility Consolidation .. 5
Air Traffic Control Reform ... 7
The Next Generation Air Transportation System (NextGen) ... 8
Aviation Safety Programs .. 10
 Airline Safety ... 10
 Air Ambulance Safety .. 11
 Aviation Cybersecurity .. 12
 Oversight of Maintenance Repair Stations ... 12
 Integration of Unmanned Aircraft ... 13

Tables

Table 1. Aviation Taxes and Fees ... 2
Table 2. Reauthorization Funding Levels for FAA Accounts .. 4
Table 3. Funding for NextGen Programs .. 8

Contacts

Author Information ... 14
Introduction

Federal Aviation Administration (FAA) programs and activities are funded under four broad budget accounts: operations and maintenance (such as air traffic control and aviation safety functions); facilities and equipment (such as control towers and navigation beacons); grants for airport improvements under the Airport Improvement Program (AIP); and civil aviation research and development conducted or sponsored by FAA. Additionally, certain aviation programs are administered by the Department of Transportation (DOT) Office of the Secretary, including the Essential Air Service (EAS) program, which subsidizes airline service to certain small or isolated communities. These programs are funded primarily through a special trust fund, the Airport and Airways Trust Fund (AATF), and, in part, through general fund contributions.

Other federal entities also play significant roles in civil aviation. These include the National Aeronautics and Space Administration, which conducts extensive research on civil aeronautics; the National Oceanic and Atmospheric Administration, which provides research and operational support to FAA regarding aviation weather forecasting; the Transportation Security Administration in the Department of Homeland Security, which has authority over civil aviation security; and the National Transportation Safety Board, which investigates aviation accidents and makes safety recommendations to FAA. These programs are not considered in this report. This report focuses on FAA and DOT civil aviation programs addressed in the FAA Extension, Safety, and Security Act of 2016 (P.L. 114-190), enacted on July 15, 2016, which authorizes AATF taxes and revenue collections and civil aviation program expenditures through FY2017. A subsequent six-month extension (P.L. 115-63) is set to expire at the end of March 2018.

The Airport and Airways Trust Fund

The AATF, sometimes referred to as the aviation trust fund, was established in 1970 under the Airport and Airway Development Act of 1970 (P.L. 91-258) to provide for expansion of the nation’s airports and air traffic system. It has been the major funding source for federal aviation programs since its creation. Between FY2013 and FY2016, the AATF provided between 71.5% and 92.8% of FAA’s total annual funding, the remainder coming from general fund appropriations. Revenue sources for the trust fund include passenger ticket taxes, segment fees, air cargo fees, and fuel taxes paid by both commercial and general aviation aircraft (see Table 1).

In addition to excise taxes deposited into the trust fund, FAA imposes air traffic service fees on flights that transit U.S.-controlled airspace but do not take off from or land in the United States. These overflight fees partially fund the EAS program.

In FY2016 the AATF had revenues of over $14.4 billion and maintained a cash balance of more than $14 billion. The uncommitted balance—the amount of funds not yet obligated—was approximately $5.7 billion at the end of FY2016. Nonetheless, the long-term vitality of the AATF remains a concern. AATF revenue is largely dependent on airlines’ ticket sales, and the spread of low-cost air carrier models has held down ticket prices and therefore AATF receipts.

Table 1. Aviation Taxes and Fees
(CY2018 rates)

<table>
<thead>
<tr>
<th>Tax or Fee</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Ticket Tax (on domestic ticket purchases and frequent flyer awards)</td>
<td>7.5%</td>
</tr>
<tr>
<td>Flight Segment Tax (domestic, indexed annually to Consumer Price Index)</td>
<td>$4.20</td>
</tr>
<tr>
<td>Cargo Waybill Tax</td>
<td>6.25%</td>
</tr>
<tr>
<td>Frequent Flyer Tax</td>
<td>7.5%</td>
</tr>
<tr>
<td>General Aviation Gasoline (^a)</td>
<td>19.3 cents/gallon</td>
</tr>
<tr>
<td>General Aviation Jet Fuel (^a) (Kerosene)</td>
<td>21.8 cents/gallon</td>
</tr>
<tr>
<td>Commercial Jet Fuel (^a) (Kerosene)</td>
<td>4.3 cents/gallon</td>
</tr>
<tr>
<td>International Departure/Arrivals Tax (indexed annually to Consumer Price Index)</td>
<td>$18.30 (Alaska/Hawaii = $9.20)</td>
</tr>
<tr>
<td>Fractional Ownership Surtax on general aviation jet fuel</td>
<td>14.1 cents/gallon</td>
</tr>
</tbody>
</table>

Source: Federal Aviation Administration, Current Aviation Excise Tax Structure, updated January 2018.

\(^a\) Does not include a 0.1 cents/gallon tax for the Leaking Underground Storage Tank (LUST) trust fund.

AATF revenues have been adversely affected by the recent trend among airlines to impose fees for a variety of add-on services and amenities such as checked bags, onboard Wi-Fi access, or seats with additional leg room. Generally, fees not included in the base ticket price are not subject to federal excise taxes. Air carriers generated over $4.1 billion in baggage fees in 2016.\(^3\) The trust fund would have received more than $307 million from baggage fees alone had these fees been subject to the 7.5% excise tax. If airlines continue to expand use of ancillary fees as an alternative to increasing base ticket prices, tax revenues may not keep up with federal spending on aviation programs.

Airlines have long contended that general aviation operators, particularly corporate jets, should provide a larger share of the revenues supporting the trust fund. General aviation interests dispute this, arguing that the air traffic system mainly supports the airlines and that nonairline users pay a reasonable share given the relatively small incremental costs arising from their flights.

In 2015, the Obama Administration proposed a per-flight user charge of $100 on commercial and general aviation jets and turboprops that fly in controlled airspace as an additional revenue source for the AATF. The proposal, estimated in 2011 to generate $11 billion over 10 years,\(^4\) was opposed by general aviation interests, which depicted this as a first step toward funding the air traffic control system through user charges. The Administration’s budgets for FY2016 and FY2017 did not include such a proposal. Proposals by the Clinton Administration and the George W. Bush Administration to establish user charges for air traffic services also failed to gain congressional support.

The Trump Administration’s budget for FY2019 did not include a specific user fee proposal. Rather, the Trump Administration has proposed comprehensive reforms to shift air traffic services to an independent, self-sufficient, nongovernmental cooperative funded entirely through user fees that would cover both its costs of operations and recapitalization.\(^5\)

FAA Funding Accounts

In recent years, FAA funding has totaled between $15 billion and $17 billion annually. FAA funding is divided among four main accounts. Operations and Maintenance (O&M) receives slightly more than 60% of total FAA appropriations. It is the only FAA account that is funded, in part, by general fund contributions. The O&M account principally funds air traffic operations and aviation safety programs. The Airport Improvement Program (AIP) provides federal grants-in-aid for projects such as new runways and taxiways; runway lengthening, rehabilitation, and repair; and noise mitigation near airports. The Facilities and Equipment (F&E) account provides funding for the acquisition and maintenance of air traffic facilities and equipment, and for engineering, development, testing, and evaluation of technologies related to the federal air traffic system. The Research, Engineering, and Development account finances research on improving aviation safety and operational efficiency and reducing environmental impacts of aviation operations. Authorizations and appropriations for these accounts are shown in [Table 2](#).

Table 2. Reauthorization Funding Levels for FAA Accounts
(dollars in millions)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations and Maintenance (O&M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authorized Levels</td>
<td>9,653</td>
<td>9,539</td>
<td>9,596</td>
<td>9,653</td>
<td>9,910</td>
<td>9,910</td>
<td>9,958</td>
</tr>
<tr>
<td>Appropriated</td>
<td>9,653</td>
<td>9,148</td>
<td>9,651</td>
<td>9,741</td>
<td>9,910</td>
<td>10,026</td>
<td></td>
</tr>
<tr>
<td>Airport Improvement Program (AIP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriated</td>
<td>3,350</td>
<td>3,343</td>
<td>3,480</td>
<td>3,350</td>
<td>3,350</td>
<td>3,350</td>
<td></td>
</tr>
<tr>
<td>Facilities and Equipment (F&E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authorized Levels</td>
<td>2,731</td>
<td>2,715</td>
<td>2,730</td>
<td>2,855</td>
<td>2,855</td>
<td>2,836</td>
<td></td>
</tr>
<tr>
<td>Appropriated</td>
<td>2,731</td>
<td>2,588</td>
<td>2,600</td>
<td>2,600</td>
<td>2,855</td>
<td>2,855</td>
<td></td>
</tr>
<tr>
<td>Research, Engineering, and Development (RE&D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authorized Levels</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>166</td>
<td>166</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Appropriated</td>
<td>168</td>
<td>159</td>
<td>133</td>
<td>157</td>
<td>166</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>15,902</td>
<td>15,772</td>
<td>15,814</td>
<td>15,901</td>
<td>16,281</td>
<td>16,407</td>
<td>16,296</td>
</tr>
<tr>
<td>Authorized Amounts</td>
<td>15,902</td>
<td>15,238</td>
<td>15,864</td>
<td>15,848</td>
<td>16,281</td>
<td>16,407</td>
<td></td>
</tr>
</tbody>
</table>

Airport Financing

AIP provides federal grants for airport development. AIP funding, distributed both by formula and by discretionary grants, is usually limited to capital improvements related to aircraft operations, particularly improvements addressing safety, capacity, and environmental concerns. Commercial revenue-producing portions of airports and airport terminals are generally not eligible for AIP funding. AIP money usually cannot be used for airport operational expenses or bond repayments. It may be spent only on public-use airports identified in FAA’s National Plan of Integrated Airports Systems, which currently lists over 3,300 airports across the United States considered significant to national air transportation.

In general, the federal share of costs for AIP projects is capped at the following levels:

- 75% for large and medium hub airports (80% for noise compatibility projects);
- 90% or 95% for other airports, depending on statutory requirements.

Additionally, certain economically distressed communities and communities receiving EAS-subsidized air carrier service may be eligible for up to a 95% federal share of project costs.

Passenger facility charges (PFCs) provide a source of nonfederal funds intended to complement AIP spending. A PFC is a local tax imposed, with federal approval, by an airport on each boarding passenger. PFC funds can be used for a broader range of projects than AIP grants and are more likely to be used for landside projects such as improvements to passenger terminals and ground transportation facilities. PFCs can also be used for bond repayments. Currently, PFCs are capped at $4.50 per boarded passenger, with a maximum charge of $18 per round trip flight. PFCs are collected by the airlines and remitted to the airports.

Airports also raise funds for capital projects from bonds, state and local grants, landing fees, on-airport parking, and lease agreements.

FAA Management and Organizational Issues

FAA is a large organization, with more than 43,000 full-time equivalent positions. More than 31,000 of these are in the Air Traffic Organization (ATO), including approximately 14,500 air traffic controllers, 5,000 air traffic supervisors and managers, and 7,800 engineers and maintenance technicians. ATO was established under Executive Order 12/07/00 in December 2000 as a functional unit within FAA but with a completely separate management and organizational structure and a mandate to employ a business-like approach emphasizing defined performance goals and metrics related to operational safety and system efficiency. Employee pay and advancement are based, in part, on meeting annual organizational goals. Creation of the ATO as a distinct entity within FAA also had the effect of more clearly separating operational components related to air traffic control from components concerned with regulation and safety oversight of airlines, aircraft operators, repair stations, flight schools, pilots and mechanics, and other entities.

Air Traffic Controller Workforce

Although air traffic modernization will have some impact on the nature of controller job functions and training, it is not expected to have a significant impact on the size of the FAA controller workforce. While total controller staffing levels are expected to remain near the current level through 2026, a present concern is the percentage of controllers in on-the-job training, which currently stands at roughly 25% at en route facilities and 15% at terminal facilities. The training process takes several years, but FAA anticipates that proportion of controllers who are fully qualified will rise significantly by 2021.

Section 2106 of P.L. 114-190 requires FAA to give hiring preference to controller candidates with prior military or civilian air traffic control experience, veterans, and graduates of FAA-approved college training programs. It also prohibits FAA from utilizing a controversial biographical assessment tool to screen applicants, and allows individuals who did not pass the biographical assessment.

Facility Consolidation

Consolidation of FAA air traffic facilities and functions is viewed as a means to control operational costs, replace outdated facilities, and improve air traffic services. Consolidation efforts to date have focused on terminal radar approach control (TRACON) facilities. TRACON consolidation has been ongoing for many years, but in the past it has been limited to nearby and overlapping terminal areas in major metropolitan areas such as New York/Northern New Jersey, Washington/Baltimore, and Los Angeles/San Diego. More recently, FAA has sought to consolidate radar facilities across larger geographical areas focusing on small to mid-sized
airports with small-scale terminal radar facilities housed in the towers that also control landings, takeoffs, and ground movements.

Replacements are being designed to house airport tower functions only, and TRACON components are to be relocated to consolidated facilities that may be at some distance from the airport. Operations at low-activity towers that lose their TRACON components are more likely to be outsourced under the federal contract tower program, an issue of particular concern to FAA labor unions. Currently, about half of all airport control towers in the United States are operated under the contract tower program.

Facility consolidation is politically sensitive, as TRACON consolidation could result in job losses in specific congressional districts even if it does not lead to an overall decrease in jobs for air traffic controllers, systems specialists, and other supporting personnel. As originally envisioned, realignment and consolidation, coupled with airspace modernization initiatives, were anticipated to change the nature of these job functions and consolidate them in fewer physical facilities. However, the Government Accountability Office reported that much of this initiative has been deferred until after 2030.7

Section 804 of the FAA Modernization and Reform Act (P.L. 112-95) required FAA to develop a report providing a comprehensive list of its proposed recommendations for realignment and consolidation of services and facilities. The report is to include a justification, projected cost savings, and a timeline for each proposed action. FAA is required to subsequently provide Congress with formal consolidation and realignment recommendations, along with public comments received. Congress would then have the opportunity to, within 30 days, pass a joint resolution formally disapproving any recommendation in the FAA plan. If Congress disapproves, FAA would not be able to implement that specific recommendation. The law is silent with respect to FAA’s recourse to subsequently propose alternative approaches.

FAA efforts to meet the reporting requirements outlined in P.L. 112-95 have been delayed and limited in scope. In 2013, FAA established a Section 804 collaborative working group consisting of FAA personnel and FAA labor union representatives. The working group issued its first set of recommendations in March 2015, recommending only to consolidate one TRACON facility in Cape Cod, MA, with the facility in Boston, and to leave a facility in Abilene, TX, in place.8 A second set of recommendations was issued in May 2016,9 offering three recommendations for facility consolidation, out of five facilities examined, focusing on facilities in northern Ohio and central Michigan. Recently, the issue of facilities consolidation has taken a back seat to policy debate over proposals to create a private corporation to take over these facilities and air traffic control responsibilities from FAA.

Air Traffic Control Reform

In both the 114th Congress (H.R. 4441) and the 115th Congress (H.R. 2997), legislation agreed to by the House Transportation and Infrastructure Committee has sought to create a private, nonprofit corporation to run air traffic control. While the Trump Administration has similarly outlined a plan for privatizing air traffic services,10 FAA reauthorization legislation under consideration in the Senate (S. 1405) does not seek privatization.

The idea of putting an independent corporation in charge of air traffic control has been advanced by both Republicans and Democrats for more than 40 years. The Clinton Administration proposed a government-run air traffic corporation in the mid-1990s, and 60 other countries have established corporations to operate their air traffic systems. While most of these are government-owned corporations similar to what the Clinton Administration proposed two decades ago, Canada’s air traffic organization, known as NAV CANADA, is set up as a not-for-profit private entity: a model quite similar to what is currently proposed by the House Transportation and Infrastructure Committee.

The proposed Air Navigation Services Corporation, described in H.R. 2997, would be overseen by a board of directors representing the interests of various industry and labor stakeholders, including airlines, business and general aviation operators, manufacturers, and pilot and controller unions. Under the plan, the corporation would be funded entirely from user fees charged on a per-flight basis. Business jets, small piston-engine aircraft, and commuter flights serving remote locations would be exempt from paying these fees, but would continue to pay fuel taxes to fund FAA safety programs. Under both the House bill and the Trump Administration proposal, FAA would be responsible for safety regulation and oversight of the corporation.

Most major airlines support the House bill. However, business aviation and general aviation interests oppose it, largely over concerns that airlines would dominate the corporate board and promote the interests of major airlines and large passenger airports over those of small private aircraft operators and rural airports. Labor unions have been split on the issue. The proposal has won the support of the air traffic controllers union, but organizations representing other FAA employees do not support the bill. Congressional appropriators have also expressed reservations about privatizing air traffic control and cautioned that limiting congressional oversight of air traffic services would limit opportunities for public input and could negatively impact service to small communities and the cost of air transportation for consumers.11

If Congress were to decide that air traffic control should be shifted to a corporate entity, the transition would be complex. About 35,000 FAA employees, mostly those assigned to the ATO, would be affected, and more than 300 air traffic facilities would need to be transferred. Experts anticipate that negotiating, planning, and executing such a large-scale transition would take about three years and would likely involve considerable legal, financial, and administrative costs. One open question is whether this might interfere with FAA’s ongoing initiative to create a satellite-based air traffic control system known as NextGen.

The Next Generation Air Transportation System (NextGen)

NextGen is a multiyear initiative to modernize and improve the efficiency of the national airspace system, primarily by migrating to technologies and procedures using satellite-based navigation and aircraft tracking. Funding for NextGen programs totals almost $1 billion annually, primarily funded through FAA’s F&E account (see Table 3).

Table 3. Funding for NextGen Programs
(dollars in millions)

<table>
<thead>
<tr>
<th>Account</th>
<th>FY2017 Actual</th>
<th>FY2018 Annualized CR</th>
<th>FY2019 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations and Maintenance (O&M)</td>
<td>76</td>
<td>76</td>
<td>20</td>
</tr>
<tr>
<td>Facilities and Equipment (F&E)</td>
<td>900</td>
<td>908</td>
<td>833</td>
</tr>
<tr>
<td>Research, Engineering, and Development (RE&D)</td>
<td>98</td>
<td>98</td>
<td>101</td>
</tr>
<tr>
<td>TOTALS</td>
<td>1,075</td>
<td>1,081</td>
<td>953</td>
</tr>
</tbody>
</table>

Source: U.S. Department of Transportation, Budget Estimates Fiscal Year 2019, Federal Aviation Administration.
Note: Columns may not sum to totals due to rounding.

Core components of the NextGen system include the following:

- **Automatic Dependent Surveillance—Broadcast (ADS-B)**, a system for broadcasting and receiving aircraft identification, position, altitude, heading, and speed data derived from on-board navigation systems such as a Global Positioning System (GPS) receiver. “ADS-B Out” functionality refers to a basic level of aircraft equipage that transmits position data. “ADS-B In” incorporates aircraft reception of ADS-B signals from other aircraft and uplinks of traffic, weather, and flight information from ground stations. FAA funds support the installation, operation, and maintenance of the ground infrastructure to receive ADS-B transmissions and relay them to air traffic facilities and other aircraft. Most aircraft will be required to have “ADS-B Out” capability by 2020.

- **System Wide Information Management (SWIM)**, an extensive, scalable data network to share real-time operational information, such as flight plans, flight trajectories, weather, airport conditions, and temporary airspace restrictions across the entire airspace system.

- **Collaborative Air Traffic Management Technologies (CATMT)**, a suite of automation and decision-support tools designed to improve aircraft flow management by exploiting other NextGen technologies and capabilities such as SWIM.

- **Terminal Flight Data Manager (TFDM)**, a system to share real-time data among controllers, aircraft operators, and airports to improve airport arrival and departure efficiency and coordinate airport surface operations.
• **Data Communications (DataComm)**, a digital voice and data network, similar to wireless telephone capabilities, to transmit instructions, advisories, and other routine communications between aircraft and air traffic service providers.

• **National Airspace System Voice System (NVS)**, a standardized digital voice network for communications within and between FAA air traffic facilities that will replace aging analog equipment.

• **NextGen Weather**, an integrated platform for providing a common weather picture to air traffic controllers, air traffic managers, and system users.

These programs are in various stages of development. While the network of ADS-B receivers has been deployed, there is still limited integration to provide ADS-B feeds to air traffic facilities. Meanwhile, FAA must pay annual subscription fees totaling about $124 million for these data from the ADS-B system contractor. The SWIM architecture is well defined and has been in use since 2010, allowing appropriately equipped system users to access weather and flight planning information. However, the addition of more extensive services is planned. Much of this will focus on collaborative air traffic management technologies to improve airspace and airport efficiency.

Airlines have already invested in cockpit technologies compatible with FAA DataComm systems, which are currently being deployed to several commercial service airport towers, and therefore the transition to digital voice and data communications between pilots and controllers is expected to proceed smoothly. Likewise, most airlines and many business jet operators have already equipped with precision navigation capabilities allowing them to fly more efficient routes and airport arrival and departure paths.

However, ADS-B equipage is proceeding slowly. General aviation operators have been reluctant to equip with ADS-B despite a regulatory mandate to install ADS-B Out equipment by January 2020 and despite available financial assistance from FAA to do so. For airlines and owners of business jets, which have also been slow to acquire and install ADS-B in their fleets, FAA has proposed various “best-equipped best-served” concepts to encourage adoption of the technology. Under this concept, those that equip early with NextGen capabilities will reap some of the benefits of those capabilities through preferential treatment with respect to flight routing and arrival and departure queuing. Examples include giving ADS-B equipped aircraft priority access to more efficient offshore routes along the East Coast and allowing ADS-B aircraft more flexibility to climb to fuel-saving altitudes in the South Pacific.\(^\text{12}\) In addition, ADS-B and other NextGen technologies may provide some intrinsic benefits, particularly to small general aviation aircraft, by bringing pilots robust traffic and weather data that may enhance safety. FAA plans to promote these benefits to encourage more users to adopt NextGen technologies quickly. ADS-B installations had been completed on about 50,000 aircraft, including 1,700 commercial planes, as of February 2018.\(^\text{13}\) Estimates place the current equipage level at about 25% of the number of aircraft that will need to comply by January 1, 2020. This could create considerable challenges for moving forward with plans to transition from radar to ADS-B over the next seven years as originally planned.

\(^\text{13}\) Federal Aviation Administration, *Current Equipage Levels*, https://www.faa.gov/nextgen/equipadsb/installation/current_equipage_levels/.
Aviation Safety Programs

FAA’s regulatory functions are focused on the safety of civil aviation operations. FAA’s office of aviation safety consists of about 7,300 full-time equivalent positions including regulators, inspectors, engineers, and support personnel who are responsible for writing and enforcing all federal civil aviation safety standards. FAA’s role in aviation safety includes certification of aircraft and aircraft components, regulation and oversight of airlines and other aircraft operators, and initiatives to reduce safety risks associated with airport operations. Although the United States achieves extremely high levels of aviation safety and has one of the safest aviation systems in the world, Congress has expressed particular concern in recent years about safety regulation and oversight of smaller regional air carriers; the safety of air ambulances; regulation of outsourced air carrier maintenance; airport surface movement safety; and, most recently, the integration of unmanned aircraft (drones) into the national airspace system.

Airline Safety

Following the February 12, 2009, crash of a Continental Connection flight from Newark, NJ, to Buffalo, NY, the Airline Safety and Federal Aviation Administration Extension Act of 2010 (P.L. 111-216) required FAA to make substantive regulatory changes addressing airline pilot fatigue; airline pilot qualifications; FAA pilot records; airline flight crew and dispatcher training; FAA oversight and surveillance of air carriers; pilot mentoring, professional development, and leadership; and flight crewmember pairing and crew resource management techniques.

In response to these mandates, FAA issued regulations setting duty limits for passenger airline pilots based on time of day, number of flight segments, and number of time zones crossed, and establishing a minimum 10-hour rest period between duty periods, two hours more than previously required. FAA also required air carriers to implement fatigue risk management programs to aid airlines and flight crews in ensuring that pilots are fit for duty.14

In addition, FAA issued new qualification standards for first officers, generally requiring that they meet the same certification minimum training and experience requirements previously required of airline captains, who typically must have at least 1,500 hours of flight experience.15 Moreover, the regulations require pilots to gain an additional 1,000 hours of experience in airline operations before being upgraded to captain. Some regional air carriers have asserted that these requirements limit the supply of qualified pilots. An amendment to S. 1405 agreed to by the Senate Committee on Commerce, Science, and Transportation would modify language in P.L. 111-216 to allow for the use of structured and disciplined training courses to partially fulfill the flight hour requirements for airline pilot certificate applicants.

FAA has also revamped regulations regarding airline training programs for flight crews and dispatchers, and has directed air carriers to develop safety management systems that provide comprehensive, process-oriented safety programs throughout each airline’s organization.16 It

14 Federal Aviation Administration, “Flightcrew Member Duty and Rest Requirements,” 77(2) Federal Register 330-403, January 4, 2012; Federal Aviation Administration, “Flightcrew Member Duty and Rest Requirements; Correction,” 77(95) Federal Register 28763, May 16, 2012.
16 Federal Aviation Administration, “Qualification, Service, and Use of Crewmembers and Aircraft Dispatchers,” 78
plans future modifications to air carrier training programs to address mentoring, leadership, and professional development of less experienced pilots, as mandated in P.L. 111-216.17

P.L. 114-190 set a deadline of April 30, 2017, for FAA to make available a pilot records database allowing airlines to review FAA, air carrier, and national driver register records pertaining to pilot job applicants. FAA has implemented a phased approach, setting up a web-based portal for employers to conduct safety background checks of pilot applicants while it engages in further rulemaking proceedings to fully implement the system.18 The act also directed FAA to issue guidance to air carriers and inspectors for assessing pilot competency in manual flying skills and use of cockpit automation, and to verify that airline pilot training programs adequately address the monitoring of automated systems and controlling of aircraft without the use of autopilot or autoflight systems. The act also directed FAA to consider whether additional screening and treatment for mental health conditions, including depression and suicidal thoughts or tendencies, should be considered in the medical certification of airline pilots.

Air Ambulance Safety

Accidents have shined a spotlight on the safety of air ambulances, particularly helicopter emergency medical service (HEMS) flights. The National Transportation Safety Board (NTSB) recommended mandatory use of formal flight dispatch procedures and risk management practices by helicopter air ambulance operators as well as mandatory installation of terrain warning systems on HEMS aircraft. NTSB found that many air ambulance accidents have occurred when patients were not on board, and, therefore, operations were conducted under less stringent rules regarding weather and pilot duty times. Following NTSB’s recommendations, P.L. 112-95 required air ambulances to comply with more stringent commercial operating requirements pertaining to weather conditions and crew flight and duty times whenever medical personnel are on board, and mandated FAA to establish regulations to enhance helicopter air ambulance safety.

In February 2014, FAA required changes in helicopter operational procedures and cockpit technologies that are designed to improve operational safety and provide better situation awareness and warnings regarding terrain and obstacles to pilots.19 The regulations apply commercial operating standards to all air ambulance flights with medical personnel onboard, mandate radio altimeters and terrain awareness and warning systems for HEMS aircraft, and require HEMS operators to conduct preflight risk analyses and provide safety training or briefings to onboard medical personnel. Additionally, HEMS operators with 10 or more helicopters are now required to establish operations control centers staffed by FAA-approved operations control specialists.

In response to a number of deadly helicopter air ambulance crashes and other helicopter accidents involving postcrash fires, a provision in P.L. 114-190 directs FAA to evaluate and update, as necessary, crash-resistance standards for helicopter fuel systems.

17 Federal Aviation Administration, “Pilot Professional Development,” 81 Federal Register 69908-69948, October 7, 2016.

19 Federal Aviation Administration, “Helicopter Air Ambulance, Commercial Helicopter, and Part 91 Helicopter Operations,” 79 Federal Register 9931-9979, April 22, 2014.
Aviation Cybersecurity

Cybersecurity has been a growing concern for civil aviation as the shift from stand-alone navigation equipment, radar tracking, and analog two-way radios to highly integrated and interdependent computers and digital networks, both onboard aircraft and in air traffic control facilities, creates inherent security vulnerabilities. Section 2111 of P.L. 114-190 directed FAA to develop a comprehensive strategic framework to reduce cybersecurity risks to aviation. The act also directed FAA to establish a cybersecurity research and development plan for the national airspace system and to assess the cost and timeline of developing and maintaining an agency-wide cybersecurity threat model as recommended in a 2015 Government Accountability Office study. It also instructed FAA to clarify roles and responsibilities among FAA employees; to take various actions to reduce cybersecurity risks to air traffic control systems; and to support industry efforts to apply consensus standards and best practices for information security.

Oversight of Maintenance Repair Stations

Many airlines now outsource at least some of their maintenance work to repair stations in the United States and abroad. Concern about the safety of outsourcing arose following the NTSB investigation of the crash of a USAirways Express flight in January 2003 while taking off from Charlotte, NC. NTSB found that the plane’s elevator control system was rigged improperly, and that maintenance work that had been performed by a contract repair facility lacked sufficient oversight and quality assurance. It recommended that FAA perform targeted surveillance and increased oversight of airline maintenance practices, require approved air carrier maintenance training programs, and require air carriers to implement comprehensive aviation maintenance human factors programs.

Congress has expressed specific concern over the quality of work and oversight of maintenance performed on air carrier aircraft at maintenance facilities in foreign countries. P.L. 112-95 required FAA to ensure that foreign repair stations are subject to inspections consistent with existing U.S. requirements at least annually, consistent with obligations under international agreements. FAA was directed to issue annual reports describing improvements in its capabilities to track where airline maintenance is performed; develop a staffing model regarding the number and geographic placement of FAA inspectors; improve maintenance inspector training; and carry out a quality assessment of FAA and foreign authority inspections.

P.L. 112-95 also requires drug and alcohol testing programs for safety-sensitive workers who repair commercial air carrier aircraft at foreign repair stations. Although the law required FAA to publish a proposed rule to require drug and alcohol testing programs at all foreign repair stations that service U.S. air carrier aircraft by February 14, 2013, the rulemaking was delayed, according to DOT, because of the need to coordinate with foreign governments. P.L. 114-190 set deadlines specifying that a proposed rule be published by mid-October, 2016, with a final rule to be issued one year thereafter. However, no formal action has been taken since FAA published an advance notice of proposed rulemaking in March 2014. P.L. 114-190 also directed FAA to focus on foreign repair stations that conduct heavy maintenance work on U.S. air carrier aircraft, and to

Federal Civil Aviation Programs: In Brief

target its oversight activities based on the frequency and severity of instances in which air carriers must take corrective actions following servicing at foreign facilities.

Integration of Unmanned Aircraft

P.L. 112-95 directed FAA to develop a plan to begin the safe integration of civil unmanned aircraft into the national airspace system. Integrating drones into the national airspace system poses a number of challenges including the development of capabilities for drones to sense and avoid other aircraft, mitigation of risks to persons and property on the ground, qualification standards and training for pilots, systems operators, and other safety-critical personnel.

In June 2016, FAA published a final rule allowing routine commercial operations of certain small unmanned aircraft weighing less than 55 pounds. In order to fly for commercial purposes, operators must obtain a remote pilot certification from FAA. Generally, flights must stay below 400 feet, and speeds must be kept below 100 miles per hour. Flights are generally limited to daylight hours in good visibility, and the drone must be kept within sight of the operator and cannot be flown over people not directly involved in its operation. The regulations provide a mechanism for commercial entities to obtain waivers from these restrictions on a case-by-case basis. P.L. 114-190 included language directing FAA to consider requests allowing beyond visual-line-of-sight operations and night flights to support construction, inspection, and repair of oil and gas facilities, pipelines, and power lines. Future expansion of commercial applications for unmanned aircraft, like remote monitoring and express package delivery service, may hinge on further regulatory action allowing for routine operations beyond visual-line-of-sight, during both night and day, and in poor visibility, as well as permitting operations in which multiple drones may be controlled by a single operator.

The regulations governing small commercial unmanned aircraft do not apply to drones and other remote-controlled aircraft operated strictly for hobby or recreation. These aircraft operate under a more lenient special rule for model aircraft that does not require any specific operator certification. Operators of both commercial drones and model aircraft, however, must register their aircraft with FAA, and can do so through an online registration system.

To further address concerns over drone operations that violate airspace restrictions and interfere with manned aircraft operations, P.L. 114-190 required FAA to develop standards for remote identification of unmanned aircraft. It also established civil penalties for operators of drones that interfere with wildfire suppression, law enforcement, or other emergency response activities. The act directed FAA to set procedures for imposing unmanned aircraft restrictions around critical infrastructure and other sensitive facilities, including amusement parks and to set up a pilot program to assess the use of systems to detect unmanned aircraft in prohibited locations. It also directed FAA to coordinate with the National Aeronautics and Space Administration to research and develop technologies for unmanned aircraft traffic management, and to carry out studies assessing potential consequences of a collision between unmanned aircraft and various types of manned aircraft.

Author Information

Bart Elias
Specialist in Aviation Policy

Rachel Y. Tang
Analyst in Transportation and Industry

Disclaimer

This document was prepared by the Congressional Research Service (CRS). CRS serves as nonpartisan shared staff to congressional committees and Members of Congress. It operates solely at the behest of and under the direction of Congress. Information in a CRS Report should not be relied upon for purposes other than public understanding of information that has been provided by CRS to Members of Congress in connection with CRS’s institutional role. CRS Reports, as a work of the United States Government, are not subject to copyright protection in the United States. Any CRS Report may be reproduced and distributed in its entirety without permission from CRS. However, as a CRS Report may include copyrighted images or material from a third party, you may need to obtain the permission of the copyright holder if you wish to copy or otherwise use copyrighted material.